
职称: | 教授,博导 |
---|---|
所属部门: | 基础数学系 |
办公室: | 闵行数学楼319室 |
办公电话: | 54342646-319 |
邮箱: | xqwang@math.ecnu.edu.cn |
个人主页: | http:/~xqwang |
学校名录: | http://faculty.ecnu.edu.cn/s/1284/main.jspy |
1984、9-1988、7 杭州大学数学系,本科
1984、9-1991、7 杭州大学数学系,硕士
1991、7-1996、9 浙江师范大学数学系,教师
1996、9-1999、7 中国科学院,博士
1999、7-2001、7 浙江大学数学系,博士后
2001、9-- 全讯600cc大白菜官网数学系,副教授
";} ?>CURRICULUM VITAE
Wang Xiaoqin (汪晓勤)
Date of birth: 20, November, 1966
Place of birth: Zhejiang, China
School Record:
Ph.D. Institute for the History of Natural Sciences, CAS 1999
M.S. Hangzhou University 1991
B.S. Hangzhou University 1988
Professional career:
1991-1996 zhejiang Normal University, Jinhua, Zhejiang
1999-2001 Zhejiang University, Post-Doc.
2001.9- East China Normal University
";} ?>
学术论文 |
|
[1] |
李善兰《方圆阐幽》研究(与骆祖英). 浙江师范大学学报(自然科学版)‚ 1991‚ 14 (2) |
[2] |
《九章算术》等差数列问题研究. 浙江师范大学学报(自然科学版)‚ 1995‚ 18 (1): 19-23 |
[3] |
关于《数书九章》大衍类算题的若干注记. 浙江师范大学学报(自然科学版)‚ 1997‚ 20 (2): 13-18 |
[4] |
伟烈亚力对中国数学的评介. 中国科技史料‚ 1998‚ 19 (2): 10-23 |
[5] |
《缀术》中的“刍甍方亭之问”. 自然科学史研究‚ 1999‚ 18 (1): 20-27 |
[6] |
大衍求一术在西方的历程. 自然科学史研究‚ 1999‚ 18 (3): 222-233 |
[7] |
伟烈亚力的学术生涯. 中国科技史料‚ 1999‚ 20 (1): 17-34 |
[8] |
伟烈亚力与中国数学史. 大自然探索‚ 1999‚ 18 (4): 113-117; 人大报刊复印资料《科学技术哲学》‚ 2000(1) |
[9] |
秦九韶. 载白寿彝主编. 中国通史‚ 第7卷第7章‚ 上海: 上海人民出版社‚ 1999: 1890-1899 |
[10] |
祖冲之圆周率在西方的历史境遇. 自然杂志‚ 2000‚ 22(5): 300-304 |
[11] |
关于阿基米德盒盖求积方法的注记. 曲阜师范大学学报(自然科学版)‚ 2000‚ 26 (4): 25-28 |
[12] |
伟烈亚力所介绍的数学史知识. 中国科技史料‚ 2000‚ 21 (2): 158-167 |
[13] |
西方学者对中国传统数学的怀疑和偏见. 自然辩证法研究‚ 2000‚ 16 (2): 68-71 |
[14] |
微积分在中国的最初岁月——纪念《代微积拾级》出版140周年. 文献‚ 2000 (4): 219-229 |
[15] |
石钟慈院士采访记. 中国科技史料‚ 2001‚ 22 (1): 45-52 |
[16] |
德摩根: 杰出的数学家、数学史家和数学教育家. 自然辩证法通讯‚ 2001‚ 23 (1): 70-84 |
[17] |
艾约瑟: 致力于中西科技家流的传教士和学者. 自然辩证法通讯‚ 2001‚ 23 (5): 74-83 |
[18] |
关于《代微积拾级》的若干注记. 浙江大学学报 (理学版) ‚ 2001‚ 28 (4): 384-393 |
[19] |
三次方程求根公式之诞生. 科学‚ 2001‚ 53 (2): 55-58 |
[20] |
一种中世纪的数字棋. 科学‚ 2001‚ 53 (6): 57-59 |
[21] |
Wang Xiaotong‚ Encyclopaedia Britannica‚ new edition (2001) |
[22] |
谁是幂和公式的开山祖? 科学‚ 2002‚ 54 (3): 53-54 |
[23] |
欧拉与自然数平方倒数和. 曲阜师范大学学报‚ 2002‚ 28 (4): 29-33 |
[24] |
关于一个定积分的历史注记. 高等数学研究‚ 2002‚ 5 (4): 46-49 |
[25] |
泰尔凯: 19世纪前瞻的数学史家. 自然辩证法研究‚ 2002‚ 18 (8): 78-80 |
[26] |
A History of Dayan Qiuyi Rule in the West. In A. K. L. Chan‚ G. K. Clancey & Hui- Chieh Loy (Eds.). Historical Perspectives on East Asian Sience‚ Technology and Medicine. Singapore: Singapore Universwity Press & World Scientific‚ 2002 |
[27] |
19世纪以前西方对中国传统数学的认识和了解. 清华学报‚ 2003‚ 33 (1): 73-97 |
[28] |
HPM的历史渊源. 数学教育学报‚ 2003‚ 12 (3): 24-27 |
[29] |
HPM视角下的高等数学教学. 高等理科教育‚ 2003 (5): 10-12 |
[30] |
毕欧与中国数学史. 自然辩证法通讯‚ 2003‚ 25 (6): 67-72 |
[31] |
17?19世纪法国数学家的圆周率的初等研究与刘徽割圆术. 浙江大学学报 (理学版)‚ 2003‚ 30 (1): 1-6 |
[32] |
柯尔莫戈洛夫: 为数学和教育贡献一生. 科学‚ 2003‚ 55 (6): 43-46 |
[33] |
杰出的六朝数学成就‚载周翰光‚ 戴洪才主编‚ 六朝科技‚ 南京: 南京出版社‚ 2003. 第二章. |
[34] |
M·克莱因的数学教育思想与高等数学教学. 曲阜师范大学学报‚ 2004‚ 30 (4): 106-110 |
[35] |
19世纪上半叶无穷级数敛散性判别法. 大学数学‚ 2004‚ 20 (6): 125-134 |
[36] |
美国学者眼中数学史的教育价值. 自然辩证法研究‚ 2004‚ 20 (6): 73-77 |
[37] |
一卷永不过期的数学狂怪档案. 自然辩证法研究‚ 2004‚ 20 (9): 86-89 |
[38] |
自然数幂和公式之矩阵算法. 高等数学研究‚ 2004‚ 7 (2): 35-37. |
[39] |
沙勒: 杰出的数学家和天真的收藏者. 自然辩证法通讯‚ 2005‚ 27 (2) : 99-106 |
[40] |
斐波纳契是如何解方程的? 数学传播‚ 2005‚ 29 (1): 51-63 |
[41] |
从一次测试看关于学生认知的历史发生原理. 数学教育学报‚ 2005‚ 14 (3): 30-33 |
[42] |
圆之吻: 阿波罗尼斯问题的历史(与张小明). 数学传播‚ 2006‚ 30 (2): 30-40 |
[43] |
数学与诗歌:历史寻踪. 自然辩证法通讯‚ 2006: 28 (3): 16-21 |
[44] |
高中生对实无穷的理解(与周保良). 数学教育学报‚ 2006‚ 15 (4): 90-93 |
[45] |
HPM研究的内容与方法(与张小明). 数学教育学报‚ 2006‚ 15 (1): 16-18 |
[46] |
高中生对函数概念的理解: 历史相似性初探(与任明俊). 数学教育学报‚ 2007‚ 16 (4): 84-87 |
[47] |
邹腾: 19世纪数学史家、丹麦数学的先驱者(与赵瑶瑶). 自然辩证法通讯‚ 2007‚ 29 (3): 76-84 |
[48] |
狄克逊: 多产的数学家、美国数学的先驱者(与柳笛). 自然辩证法通讯‚ 2007‚ 29 (1): 83-91 |
[49] |
数学写作在美国. 数学教育学报‚ 2007‚ 16 (3): 75-78 |
[50] |
数学与诗歌: 历史寻踪. 自然辩证法通讯‚ 2006‚ 28 (3): 16-21 |
[51] |
平面三角公式的几何渊源. 数学传播‚ 2007‚ 31 (3): 53-69 |
[52] |
雷科德: 英国第一位数学教育家. 自然辩证法通讯‚ 2008‚ 30 (5): 92-101 |
[53] |
使用否定属性策略的问题提出. 数学教育学报‚ 2008‚ 17 (4): 26-29 |
[54] |
绝版议案. 科学‚ 2008‚ 60 (3): 1-2 |
[55] |
数学史与高等数学教学. 高等理科教育‚ 2009 (2): 20-24; 31 |
[56] |
曲线的切线: 从历史到课堂(与吴甬翔). 高等理科教育‚ 2009 (3): 38-43 |
[57] |
历史发生原理及其教学启示. 载张奠宙‚ 何文忠主编‚ 《交流与合作》‚ 南宁: 广西 教育出版社‚ 2009. 288-322 |
[58] |
中学数学教学中融入数学史的行动研究(与张小明). 数学教育学报‚ 2009‚ 18 (4): 89-92 |
[59] |
国外数学教育的传入与影响 (与张英伯). 载王建磐主编‚ 《中国数学教育: 传统与现实》‚ 南京: 江苏教育出版社‚ 2009. 31-65 |
[60] |
希思: 一代科学史先驱(与柳笛). 自然辩证法通讯‚ 2009. 待发表 |
[61] |
史密斯: 杰出的数学史家、数学教育家与人文主义者. 自然辩证法通讯‚ 待发表 |
[62] |
华里司: 自学成才的数学家、欧洲大陆微积分的早期传播者. 自然辩证法通讯‚ 待发表 |
[63] |
通识限选课程《数学文化》的教学实践. 高等理科教育‚ 待发表 |
[64] |
高中生对切线的理解(与张小明). 数学教育学报‚ 待发表 |
************ |
|
中学HPM |
|
1992-2001 |
|
[1] |
Historically speaking: The Nine Chapters on the Mathematical Art. High School Mathematics Teaching‚ 1992 |
[2] |
B. Cavalieri and his theorem. High School Mathematics Teaching‚ 1995 |
[3] |
Archimedes and the formula for the volume of the sphere‚ High School Mathematics Teaching‚ 1996(9) |
[4] |
Blaise Pascal and the mathematical induction. High School Mathematics Teaching‚ 1997(3) |
[5] |
Historical development of the formula for the sums of powers of natural numbers. Mathematics Teaching in Middle Schools‚ 1997(5) |
[6] |
In Memoriam—B. Cavalieri. Mathematics for High School Students‚ 1998(1) |
[7] |
De Moivre and his formula. Journal of High School Mathematics‚ 1998(1) |
[8] |
A brief history of the formulas for sine and cosine with multiple angles. High School Mathematics‚ 1998(1) |
[9] |
On the teaching of the concept of infinite series‚ Education in Teacher’s College‚ 1996(3) |
[10] |
Some reflections on the teaching of the history of mathematics. Higher Education of Adults‚ 1997(1) |
[11] |
0÷0: A bought rule. Science and Culture‚ 1998(2) |
[12] |
Feuerbach and his nine-point circle‚ Journal of High-School Mathema-tics‚ 1999(2) |
[13] |
The origin and development of the concept of the complex numbers. Higher Education of Adults‚ 1999(3) |
[14] |
A brief history of the binomial theorem. Journal of High-School Mathe-matics 1999(6) |
[15] |
Archytas’ solution of the duplication problem. High School Mathema-tics Teaching‚ 2000(3) |
[16] |
The birth of the formula for roots of the cubic equations. High School Mathematics Teaching‚ 2000(7) |
[17] |
The earliest textbook on calculus in the history. Higher Education of Adults‚ 2001(5) |
[18] |
On the geometric proofs of the trigonometric formulas. Newsletter of HPM‚ 1999‚3(6-7) |
[19] |
Eleven methods of finding the sum of the second powers of integrals. High School Mathematics Teaching‚ 2001(10) |
2002 |
|
[20] |
Kowa Seki´s calculation of the volume of a sphere. High School Mathematics Teaching‚ 2002(5) |
[21] |
Integration of figures and expositions in the history of mathematics. High School Mathematics Teaching‚ 2002(7) |
[22] |
Do you need the history of mathematics? Mathematics Teaching‚ 2002 (4) |
[23] |
From the nine-point circle to the twelve-point sphere. High School Mathematics Teaching‚ 2002(9) |
2003 |
|
[24] |
The Pythagorean theorem in Babylonian tablets. High School Mathematics Teaching‚ 2003(2) |
[25] |
An example of multiculture in mathematics teaching (with Q. F. Xu ). Mathematics Teaching‚ 2003(4) |
[26] |
The teaching of the concept of complex numbers from the viewpoint of HPM. Mathematics Teaching‚ 2003 (6) |
[27] |
Teaching of the concept of geometric series from the viewpoint of HPM. High School Mathematics Teaching‚ 2003 (7) |
[28] |
The Platonic solids. High School Mathematics Teaching‚ 2003 (8) |
[29] |
The poems in ancient mathematics texts.Mathematics Teaching‚ 2003 (9) |
[30] |
The Indiana Bill on Pi. Mathematics Teaching in Middle Schools‚ 2003 (9) |
[31] |
How may the history of mathematics be integrated in high school mathematics textbooks(with Z. H. Wang). Mathematics Bulletin‚ 2003(9) |
[32] |
Some mathematical anecdotes of celebrities in the history. High School Mathematics Teaching‚ 2003 (12) |
2004 |
|
[33] |
Archimedes and Pi. Mathematics Teaching‚ 2004(1): 39-41 |
[34] |
Notes on mathematical problems in the history. High School Mathematics Teaching‚ 2004(2): 44-46 |
[35] |
Mistakes made by mathematicians in the history. Mathematics Teaching in Middle Schools‚ 2004(3): 63-64 |
[36] |
Literature and mathematics. High School Mathematics Teaching‚ 2004 (6): 1-3 |
[37] |
Some geometric explanations of five means. Journal of High School Mathematics‚ 2004(5): 25-27 |
[38] |
A brief history of symmetric functions (with X. M. Zhang). High School Mathematics Teaching‚ 2004(7): 45-47 |
[39] |
Stories of choosing mathematics. Math. & Physics Weekly (Shuli Bao)‚ July 7 & 14‚ Sept.1‚ 2004 |
[40] |
Some geometric derivations of the addition formulas. Journal of High School Mathematics‚ 2004(6): 25-27 |
[41] |
Historical Notes on geometric proofs of the tangent theorem. High School Mathematics Teaching‚ 2004(11): 47-50 |
2005 |
|
[42] |
The introduction of the operational rule “negative times negative is positive”(with W. Tong). Mathematics Teaching in Middle Schools‚ 2005 (1-2) |
[43] |
Teaching implications of Archimedes’ On the Method. Journal of High School Mathematics‚ 2005(3) |
[44] |
The search‚ transformation and exploration of the model of the sum of the second power (with C. Z. Zhang). Mathematics Teaching in Middle Schools‚ 2005(4) |
[45] |
Geometric solutions of the quadratic equations (with H. Y. Qiu). Journal of High School Mathematics‚ 2005(6) |
[46] |
Recreational problems in Fibonacci’ Liber Abaci. High School Mathematics Teaching‚ 2005(6) |
[47] |
Historical Notes on fractional equations (with X. M. Zhang). High School Mathematics Teaching‚ 2005(8) |
[48] |
The mathematical years of Thomas Carlyle (with H. X. Hu). Mathematics Teaching in Middle Schools‚ 2005(8) |
[49] |
Archimedes and the formula for the sum of the second power. Journal of High School Mathematics‚ 2005(9) |
[50] |
Historical Notes on the mean inequality. High School Mathematics Teaching‚ 2005(10) |
2006 |
|
[51] |
Practice of HPM and some implications (with X. M. Zhang). Mathematics Teaching in Middle Schools‚ 2006(1) |
[52] |
The formula for the sum of the geometric series: a geometric approach. Mathematics Teaching in Middle Schools‚ 2006(3): 12-13 |
[53] |
The Greek theory of polygonal numbers. High School Mathematics Teaching‚ 2006 (4) |
[54] |
Incommensurables and the origin of the proof by contradiction. High School Mathematics Teaching‚ 2006 (6) |
[55] |
Pappus’ geometric propositions and trigonometric formulas. Mathematics Teaching in Middle Schools‚ 2006 (6): 54-55 |
[56] |
François Viète and trigonometric formulas. Hunan Education (Mathematics Teacher)‚ 2006 (7): 43-44 |
[57] |
G. W. Leibniz and imaginary numbers (with Y. Y. Zhao). Hunan Education (Mathematics Teacher)‚ 2006 (8): 42-43‚ 37 |
[58] |
Piero della Francesca’s mathematical achievements (with D. Liu). High School Mathematics Teaching‚ 2006 (9) |
[59] |
Notes on Christoph Clavius’ geometric proof of the product formulas. Mathematics Teaching‚ 2006 (11): 41-43 |
[60] |
Teaching design of the concept of quadratic equation in one unknown from the viewpoint of HPM. Mathematics Teaching in Middle Schools‚ 2006 (12): 50-52 |
2007 |
|
[61] |
Teaching design of the solutions to quadratic equations in one unknown from the viewpoint of HPM. Mathematics Teaching in Middle Schools‚ 2007(1-2): 114-116 |
[62] |
Teaching design of the concept of a system of linear equations in two unknowns from the viewpoint of HPM. Mathematics Teaching in Middle Schools‚ 2007(5): 48-51 |
[63] |
Teaching design of the elimination method from the viewpoint of HPM. Mathematics Teaching in Middle Schools‚ 2007(6): 52-54 |
[64] |
Teaching design of complex numbers (with X. M. Zhang). Mathematics Teaching in Middle Schools‚ 2007(6): 4-7 |
[65] |
Application of similar triangles: from history to the classroom. Mathematics Teaching in Middle Schools‚ 2007(9): 54-55 |
[66] |
Locus problems in ancient Greek mathematics. Mathematics Teaching in Middle Schools‚ 2007 (9): 58-59 |
[67] |
The first theorem proved with mathematical induction (with L. L. Gao). Hunan Education (Mathematics Teacher)‚ 2007(7): 41-42 |
[68] |
Fibonacci’s legacy problem. Hunan Education (Mathematics Teacher)‚ 2007(10): 41-43 |
[69] |
Historical problems of linear equations (I). Mathematics Teaching in Middle Schools‚ 2007 (11): 51-53 |
[70] |
Historical problems of linear equations (II). Mathematics Teaching in Middle Schools‚ 2007 (12): 54-56 |
[71] |
The quadratic equation in one unknown: from history to the classroom (with H. Huangfu). Hunan Education (Mathematics Teacher)‚ 2007(12): 42-44 |
2008 |
|
[72] |
Origin and evolution of the cooperation problems. Hunan Education (Mathematics Teacher)‚ 2008(1): 42-44 |
[73] |
Fermat and analytic geometry. Mathematics Teaching in Middle Schools‚ 2008 (1-2): 122-123 |
[74] |
Descartes and analytic geometry. Mathematics Teaching in Middle Schools‚ 2008 (5): 61-62 |
[75] |
Teaching design of the topic “Origin of the analytic geometry”: Mathematics Teaching in Middle Schools‚ 2008 (6): 57-59 |
[76] |
Teaching design of the concept of linear equation in one unknown (with Huangfu Hua). Mathematics Teaching in Middle Schools‚ 2008 (3): 55-57 |
[77] |
Application of congruent triangles: from history to the classroom. Mathematics Teaching in Middle Schools‚ 2008 (10): 55-57 |
2009 |
|
[78] |
From Babylonian scribes to Da Vinci. Mathematics Teaching in Middle Schools‚ 2009 (1-2): 131-133 |
[79] |
Architecture and mathematics. Mathematics Teaching in Middle Schools‚ 2009 (7): 68-70 |
[80] |
Problems of number sequences in mathematical cuneiform texts. Mathematics Teaching. 2009 (12) |
2010 |
|
[81] |
Problems of number sequences in Egyptian mathematical papyrus. Mathematics Teaching. 2010 (1) |
[82] |
From the law of exponents to logarithms. Mathematics Teaching. to appear |
[83] |
Problems of number sequences in Fibonacci´s Liber Abaci. Mathematics Teaching. to appear |
[84] |
Problems of number sequences in the history of Islamic mathematics (with S. P. Pu). Mathematics Teaching. to appear |
[85] |
Problems of number sequences in Hebrew mathematical literature (with S. P. Pu). Mathematics Teaching. to appear |
[86] |
A brief history of the equation of an ellipse. Mathematics Teaching in Middle Schools‚ to appear |
****************** |
|
著作 |
|
[1] |
Alexander Wylie and the Scientific Exchange between China and the West. Beijing: Science Press‚ 2000 |
[2] |
Historical Topics in High School Mathematics (with X. L Han). Beijing: Science Press‚ 2002 |
[3] |
Cultural Tradition and modernization of Mathematics Education (with W. Z. Zhang et al). Beijing: Beijing University Press‚ 2006 |
***************** |
|
译著 |
|
[1] |
卡尔·萨巴. 黎曼博士的零点. 上海: 上海教育出版社‚ 2006. (与张琰、徐晓君) |
[2] |
斐波纳契. 计算之书(斯蒂格勒英译). 北京: 科学出版社‚ 2008 (与纪志刚、马丁玲、郑方磊) |
[3] |
斯图尔特. 如何切蛋糕. 上海: 上海辞书出版社‚ 2009. (与邹佳晨、陈慧) |