Toeplitz and Hankel operators on Hardy/Bergman spaces and their Dixmier trace

Genkai Zhang

Chalmers University of Technology and Göteborg University, Göteborg, Sweden

ECNU, June 20, China

1 Questions

1.1 Trace formula for Toeplitz operators on the unit disk

D, unit disk in \mathbb{C} .

H, Bergman space $L^2_a(D)\subset L^2(D)$ or Hardy space $H^2(\partial D)\subset L^2(\partial D)$, and $P:L^2\to H$ the orthogonal projection.

 $T_f = PM_fP$, $H_f = (I-P)M_fP$, Toeplitz and Hankel operator on H with symbol f.

Trace formula: The commutator $[T_f^*, T_f]$ is of trace class,

$${
m tr}[T_f^*,T_f]=|H_{ar{f}}|_2^2=\int_D|f'(z)|^2\,dm(z)={
m Area}f(D),$$

for holomorphic f with appropriate growth condition (say continuous on the boundary)

1.2 Unit ball

 $B=B^d$ unit ball in \mathbb{C}^d , $d\geq 2$.

 $[T_f^*,T_f]=H_{ar f}^*H_{ar f}$ is never trace class. Trace Formula above does not make sense.

Precise statement: Let \mathcal{L}^p be the Schatten - von Neumann class of p-summable operators. The commutator $[T_f^*, T_f]$, for holomorphic f, on the Hardy or Bergman is in

$$\mathcal{L}^p$$
 iff $f \in B_p$ (holomorphic Besov space)

for p > d,

$$\mathcal{L}^p$$
 iff $f = const.$ $(i.e. H_{\bar{f}} = 0)$

for $p \leq d$.

(Arazy-Fisher-Janson-Peetre, Rochberg, Zhu, Zhang ...),

Remark: Different behaviour in dimension d=1. The Hankel operator $H_{\bar{f}}$ on the Bergman space is in the Schatten class \mathcal{L}^p for smooth f for p>1. On Hardy space H_f can be of finite rank and thus in any \mathcal{L}^p , p>0. [Peller, Arazy-Fisher-Peetre, ...])

Variation of the Trace formula due to Helton and Howe.

Take smooth functions f_1, \dots, f_{2d} on the closed unit ball. Consider the antisymmetrization $[T_{f_1}, T_{f_2}, \dots T_{f_{2d}}]$ of the 2d operators $T_{f_1}, T_{f_2}, \dots T_{f_{2d}}$. It is of trace class

$$\operatorname{tr}[T_{f_1}, T_{f_2}, \cdots T_{f_{2d}}] = \int_B df_1 \wedge df_2 \cdots \wedge df_{2d}.$$

1.3 Dixmier Trace

Refined statement on the Schatten - von Neumann properties of the Toeplitz: Let $\mathcal{L}^{1,\infty}$ be the weak trace class. (E.g. the diagonal operator with eigenvalues $\{1/n\}$ is in $\mathcal{L}^{1,\infty}$.) The commutator $[T_f^*, T_f]^d$ is in $\mathcal{L}^{1,\infty}$ (but not $\mathcal{L}^{1,\infty}$)

Dixmier trace on $\mathcal{L}^{1,\infty}$: Consider (as an motivating example) the following spaces

$$l^1 \subset l^{1,\infty} \subset l^{\infty}$$

of sequences $\{a_n\}$. By Hahn-Banach theorem there exist linear functionals on l^{∞} which vanish on l^1 but not on $l^{1,\infty}$. (A kind of summation method.)

Recall the Macaev (or Dixmier) class $\mathcal{L}^{1,\infty}$, consists of all compact operators T such that the eigenvalues $\mu_1 \geq \mu_2 \geq \dots$ of |T| satisfy

$$\sum_{n=1}^{N} \mu_n = O(\log N).$$

Dixmier traces tr_w is a linear functional on $\mathcal{L}^{1,\infty}$ (depending on a linear functional ω on $C_b(\mathbb{R}_+)$).

Example: $\frac{d}{d\theta}$ the differential operator on $L^2(\partial D)$. The eigenvalues of $|\frac{d}{d\theta}|$ are

|n|, $|\frac{d}{d\theta}|e^{in\theta}=|n|e^{in\theta}$. The Dixmier trace

$$\operatorname{tr}_w \left| \frac{d}{d\theta} \right|^{-1} = 1$$

Theorem 1.1. (Connes) Let $Q = p(x, \partial)$ be a differential pseudo-differential operator of order -n on a compact manifold M. Then $p(x, \partial)$ is in the weak trace class and

$$\operatorname{tr}_{\omega} Q = \int_{S} p$$

where S in the unit sphere bundle in the cotangent bundle of M. $(S = \{x, \xi); \xi \in T_x^*(M), |\xi|_x = 1\}).$

1.4 Questions.

ullet Study Dixmier trace formulas on a strongly pseudo-convex smooth domain in \mathbb{C}^d .

Motivation: Find CR-invariants of the boundary $\partial\Omega$.

2 Results

2.1 Hardy space on the unit ball

Let

$$\partial_j^b = \partial_j - \bar{z}_j R, \quad \bar{\partial}_j^b = \bar{\partial}_j - z_j \bar{R},$$

be the boundary Cauchy-Riemann operators, where $R = \sum_{j=1}^d z_j \partial_j$ is the holomorphic radial derivative.

Definition 2.1. Let f and g be smooth functions on S. The function

$$\{f,g\}_b := \sum_{j=1}^d (\partial_j^b f \,\bar{\partial}_j^b g - \bar{\partial}_j^b f \,\partial_j^b g)$$

is called the boundary Poisson bracket.

Theorem 2.2. (Englis-Guo-Zhang, 2009) Let $f_1, g_1, \dots, f_d, g_d$ be smooth functions on $S, \tilde{f}_1, \tilde{g}_1, \dots, \tilde{f}_d, \tilde{g}_d$ their smooth extensions to B and $T_{\tilde{f}_1}, T_{\tilde{g}_1}, \dots, T_{\tilde{f}_d}, T_{\tilde{g}_d}$ the associated Toeplitz operators on \mathcal{H}_{ν} for $\nu \geq d$. Then the product $\prod_{j=1}^{d} [T_{\tilde{f}_j}, T_{\tilde{g}_j}]$

is in the Macaev class and its Dixmier trace is given by

$$\operatorname{tr}_{\omega} \prod_{j=1}^{d} [T_{\tilde{f}_j}, T_{\tilde{g}_j}] = \int_{S} \prod_{j=1}^{d} \{f_j, g_j\}_b.$$

The result is proved by using Howe's trick realizing Toeplitz operators on Hardy and Bergman spaces as pseudo-Toeplitz operators on the Fock space $\mathbb{F}(\mathbb{C}^n)$ with homogeneous symbols on \mathbb{C}^n .

Theorem 2.3. (Englis-Rochberg, 2009) n = 1.

$$\operatorname{tr}_{\omega}|H_f| = \int_{\partial D} |\bar{\partial}f| d\sigma$$

In particular, if f is holomorphic

$$\operatorname{tr}_{\omega}|H_f| = \text{length of } f(\partial D)$$

Similar results expressing the Haussdorff measure of $f(\partial D)$ in terms traces studied by Connes.

- 3 Teoplitz operators and Hardy on SPCXS domains in \mathbb{C}^n
- 3.1 Psudo-differential operators

On \mathbb{R}^d : A linear partial differential operator is a linear combination of

$$f(x) \to m(x) \partial_1^{n_1} \cdots \partial_d^{n_d} f(x)$$

which can be written as

$$f(x) \to \mathcal{F}_{\xi \to x}^{-1}(m(x)\xi_1^{n_1}\cdots\xi_d^{n_d}\mathcal{F}_{x\to\xi}f)$$

with symbol

$$m(x)\xi_1^{n_1}\cdots\xi_d^{n_d}$$
.

A pseudo-differential operator is of the form

$$p(x,\partial): f(x) \to \mathcal{F}_{\xi \to x}^{-1}(p(x,\xi)\mathcal{F}_{x \to \xi})$$

with symbol $p(x,\xi)$. (There are various classes of symbol functions, e.g., the Hörmander class S^m .)

Pseudo-differential operator on Compact manifold M. Given a function $p(x,\xi)$ on the cotangent bundle of M of class S^m . M locally given by a coordinate chart $U \in \mathbb{R}^n$. Can define an operator $p(x,\partial)$ for functions f with compact support on U. On whole M can define an operator (up to operator of lower order) on $C^\infty(M)$.

3.2 Boutet de Monvel theory of Toeplitz operator on Hardy spaces with pseudo-differential symbols on the boundary of a pseudo-convex domain

Let r be a defining function for Ω , that is, $r \in C^{\infty}(\overline{\Omega})$, r < 0 on Ω , and r = 0, $\|\partial r\| > 0$ on $\partial \Omega$.

 Ω is called strongly pseudo-convex if (r can be chosen so that) the Hessian

$$(rac{\partial^2 r}{\partial z_j \bar{\partial} z_k})_{jk}$$

is positive definite for $z \in \partial \Omega$.

 η : the restriction to $\partial\Omega$ of the 1-form $\mathrm{Im}(\partial r)=(\partial r-\overline{\partial}r)/2i$.

Strict pseudoconvexity: η is a contact form, i.e. the half-line bundle

$$\Sigma := \{ (x, \xi) \in T^*(\partial \Omega) : \xi = t\eta_x, \ t > 0 \}$$

is a symplectic submanifold of $T^*(\partial\Omega)$.

Equip $\partial\Omega$ with a measure with smooth positive density, and let $L^2(\partial\Omega)$ be the Lebesgue space with respect to this measure. The Hardy space $H^2(\partial\Omega)$ is the subspace in $L^2(\partial\Omega)$ of functions whose Poisson extension is holomorphic in Ω ;

For $Q\in S^m$, the generalized Toeplitz operator $T_Q:W^m_{hol}(\partial\Omega)\to H^2(\partial\Omega)$ is defined as

$$T_Q = \Pi Q$$
,

where $\Pi:L^2(\partial\Omega)\to H^2(\partial\Omega)$ is the orthogonal projection (the Szegő projection). Alternatively, one may view T_Q as the operator

$$T_Q = \Pi Q \Pi$$

on all of $W^m(\partial\Omega)$. Actually, T_Q maps continuously $W^s(\partial\Omega)$ into $W^{s-m}_{hol}(\partial\Omega)$,

for each $s \in$, because Π is bounded on $W^s(\partial\Omega)$ for any $s \in$ (see []).

Example: $\Omega = B$ unit ball in \mathbb{C}^2 . $Q = \bar{z}_1 \partial_2 - \bar{z}_2 \partial_1$. The Toeplitz operator T = PQP is a (unbounded) shift operator:

$$z_1^m z_2^n \mapsto \alpha(m,n) z_1^{m-1} z_2^{n-1}$$

General Properties of Pseudo-Toeplitz calculus:

- "(P1)" They form an algebra which is, modulo smoothing operators, locally isomorphic to the algebra of classical pseudo differential operators on n.
- "(P2)" If P,Q are of the same order and $T_P=T_Q$, then the principal symbols $\sigma(P)$ and $\sigma(Q)$ coincide on Σ . One can thus define unambiguously the *order* of a generalized Toeplitz operator as $(T_Q):=\min\{(P):T_P=T_Q\}$, and

its principal symbol (or just "symbol") as $\sigma(T_Q):=\sigma(Q)|_{\Sigma}$ if $(Q)=(T_Q)$. (The symbol is undefined if $(T_Q)=-\infty$.)

• "(P3)" If $(T_Q) \leq 0$, then T_Q is a bounded operator on $L^2(\partial\Omega)$; if $(T_Q) < 0$, then it is even compact.

Hankel operator on Hardy or Bergman space:

$$H_Q = (I - P)QP$$

3.3 Dixmier trace of Toeplitz operator on Hardy spaces

Let T be a positive self-adjoint generalized Toeplitz operator on $\partial\Omega$ of order 1 with $\sigma(T)>0$. Let $0<\lambda_1\leq\lambda_2\leq\lambda_3\leq\ldots$ be the points of its spectrum

(counting multiplicities) and let $N(\lambda)$ denote the number of λ_j 's less than λ .

Weyl type theorem on spectral distribution (Guillemin and Boutet de Monvel): As $\lambda \to +\infty$,

$$N(\lambda) = \frac{vol(\Sigma_T)}{(2\pi)^n} \lambda^n + O(\lambda^{n-1}),$$

where Σ_T is the subset of Σ where $\sigma(T) \leq 1$, and $vol(\Sigma_T)$ is its symplectic volume.

Formula for the Dixmier trace:

Theorem 3.1. Let T be a generalized Toeplitz operator on $H^2(\partial\Omega)$ of order -n. Then $T \in \mathcal{L}^{1,\infty}$, and

$$\operatorname{tr}_w(T) = \frac{1}{n!(2\pi)^n} \sigma(T)(x, \eta_x) \ \eta \wedge (d\eta)^{n-1}.$$

In particular, T is measurable.

4 Toeplitz operator on <u>Bergman spaces via the Poisson operator</u>

Difficulty with the Toeplitz operators on Bergman space on Ω : Ω is a Non-Compact manifold. Generally Pseudo-differntial operators of negative powers on $L^2(\Omega)$ are not compact operators.

Let K denote the Poisson extension operator on Ω , i.e. K solves the Dirichlet problem

$$\Delta K u = 0$$
 on Ω , $K u|_{\partial\Omega} = u$.

(Thus K acts from functions on $\partial\Omega$ into functions on Ω . Here Δ is the ordinary Laplace operator.)

Standard elliptic regularity theory: K acts continuously from $W^s(\partial\Omega)$ onto the subspace $W^{s+1/2}(\Omega)$ of all harmonic functions in $W^{s+1/2}(\Omega)$.

The composition

$$K^*K =: \Lambda$$

is an elliptic positive pseudo differential operator on $\partial\Omega$ of order -1.

We have

$$\Lambda^{-1}K^*K = I_{L^2(\partial\Omega)},$$

while

$$K\Lambda^{-1}K^* = \Pi_{harm},$$

the orthogonal projection in onto the subspace $L^2(\Omega)$ of all harmonic functions.

The restriction

$$\gamma := \Lambda^{-1} K^* |_{L^2(\Omega)}$$

is the operator of "taking the boundary values" of a harmonic function. γ extends to a continuous operator from $W^s(\Omega)$ onto $W^{s-1/2}(\partial\Omega)$, for any $s\in\mathbb{R}$, which is the inverse of K.

Polar decomposition of K:

$$K = U(K^*K)^{1/2} = U\Lambda^{1/2},$$

U is a unitary operator from $L^2(\partial\Omega)$ onto $L^2_{harm}(\Omega)$.

Proposition 4.1. Let $w \in C^{\infty}()$ be of the form

$$w = r^m g, \qquad m = 0, 1, 2, \dots, g \in C^{\infty}().$$

Then

$$U^*T_wU = W^{-1/2-1/2}W^* = WT_{Q_w}W^*,$$

where Q_w is a pseudo differential operator on $\partial\Omega$ of order -m with

$$\sigma(Q_w)(x,\xi)|_{\Sigma} = \frac{(-1)^m m!}{|\xi|^m} g(x) \|\eta_x\|^m.$$

Thus trace formula for Teoplitz operators can be computed using the Hardy space case.

Typical case of Toeplitz operators T_f of Dixmier class on Bergman space: f on Ω vanishes of order n at $\partial\Omega$,

$$f(x) \sim r^n(x), \quad x \to \partial \Omega$$

Theorem 4.2. Assume that $f \in C^{\infty}(\Omega)$ vanishes at $\partial \Omega$ to order n. Then T_f

belongs to the Dixmier class, is measurable, and

$$\operatorname{tr}_w(T_f) = \frac{1}{n!(4\pi)^n} \mathfrak{N}^n f \, \frac{\eta \wedge (d\eta)^{n-1}}{\|\eta\|^n},$$

where \mathfrak{N} denotes the interior unit normal derivative.

4.1 Hankel type operators on Hardy and Bergman spaces

Symbols of commutators of two generalized Toeplitz operators

$$\sigma([T_P, T_Q]) = \frac{1}{i} \{ \sigma(T_P), \sigma(T_Q) \}_{\Sigma}$$

are given by the Poisson bracket (with respect to the symplectic structure of Σ) of their symbols:

Goal: Product of Hankel operators

$$H_{g_1}^* H_{f_1} H_{g_2}^* H_{f_2} \dots H_{g_n}^* H_{f_n}$$

Have to study semi-commutator $T_{PQ} - T_P T_Q$ of two generalized Toeplitz operators. It will be given, roughly speaking, by an appropriate "half" of the Poisson bracket.

T'': the anti-holomorphic complex tangent space to $\partial\Omega$.

$$E := \sum_{j=1}^{n} \frac{\partial r}{\partial z_j} \frac{\partial}{\partial j} - \frac{\partial r}{\partial j} \frac{\partial}{\partial z_j}$$

(the "complex normal" direction).

The boundary d-bar operator $\overline{\partial}_b: C^{\infty}(\partial\Omega) \to C^{\infty}(\partial\Omega, T''^*)$:

$$\overline{\partial}_b f := df|_{T''},$$

Levi form L' is the Hermitian form on T' defined by

$$L'(X,Y) := \sum_{j,k=1}^n \frac{\partial^2 r}{\partial z_j \partial_k} X_j \overline{Y}_k \qquad \text{if } X = \sum_j X_j \frac{\partial}{\partial z_j}, \ Y = \sum_k Y_k \frac{\partial}{\partial z_k}.$$

Levi form L'' on T'' defined by

$$L''(X,Y) := \sum_{j,k=1}^n \frac{\partial^2 r}{\partial z_k \partial_j} X_j \overline{Y}_k \qquad \text{if } X = \sum_j X_j \frac{\partial}{\partial_j}, \ Y = \sum_k Y_k \frac{\partial}{\partial_k}.$$

$$L''(X,Y) = L'(\overline{Y}, \overline{X}) \qquad \forall X, Y \in T''.$$

 $L^{\prime\prime}$ induces a positive definite Hermitian form on the dual space $T^{\prime\prime\prime*}$ of $T^{\prime\prime}.$

 H_f the Hankel operator on $L_a^2(\Omega)$, the Bergman space on Ω .

Theorem 4.3. (Englis-Z.) Let $f_1, g_1, \ldots, f_d, g_d \in C^{\infty}(\Omega)$. Then the operator

$$H = H_{g_1}^* H_{f_1} H_{g_2}^* H_{f_2} \dots H_{g_d}^* H_{f_d}$$

on $L_a^2(\Omega)$ belongs to the Dixmier class, and

$$\operatorname{tr}_{\omega}(H) = \frac{1}{d!(2\pi)^d} \int_{\partial \Omega} \mathcal{L}(\overline{\partial}_b f_1, \overline{\partial}_b g_1) \dots \mathcal{L}(\overline{\partial}_b f_d, \overline{\partial}_b g_d) \ \eta \wedge (d\eta)^{d-1}.$$

Remark: $\eta \wedge (d\eta)^{d-1}$ is a multiple of the area form on $\partial\Omega$, (depending on η). However the whole integration $\int_{\partial\Omega}\omega$ is biholomorphic invariant, i.e. if $F:\Omega\to\Omega_1$ is a bihomorphic mapping, then $\int_{\partial\Omega}\omega=\int_{\partial\Omega_1}\omega_1$ with $\omega=F^*\omega_1$.

Corollary 4.4. Let f be holomorphic on Ω and C^{∞} on . Then $|H_{\parallel}^{2n}$ is in the Dixmier class, measurable, and

$$\operatorname{tr}_{w}(|H_{f}|^{2n}) = \frac{1}{n!(2\pi)^{n}} \int (\overline{\partial}_{b}f, \overline{\partial}_{b}f)^{n} \eta \wedge (d\eta)^{n-1}.$$