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Classification of C*-algebras

Observation (cf. Jordan-Hélder)

When a C*-algebra A has finitely many ideals a finite decomposition
series

O=hghg---<l,=A, li/li—+ is simple

exists with (1 /lp, b/, ..., In/l,—1) unique up to isomorphism and
permutation.

Problem

Suppose /;/l;_ are all classifiable by K-theory. Is A classifiable by
K-theory?
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Task
@ Find conditions on K-theory to ensure that

AK=2B®K
@ Find conditions on K-theory to ensure that

A=B

@ Find the range of the invariant
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Simple sub-quotients

AF-algebra

Direct limit of finite dimensional
C*-algebras.

Elliott

(Ko(A), Ko(A)+) = (Ko(B), Ko(B)+)
if and only if

ARK = B®K.

Kirchberg algebra

Separable, nuclear, purely infinite
simple C*-algebra satisfying the
UCT.

Kirchberg-Phillips

(Ko(A), Ki1(A)) = (Ko(B), K1(B))
if and only if

AK=BgK.
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Task

Task
@ Find conditions on K-theory to ensure that A K =2 B K

@ Find conditions on K-theory to ensure that A= B

@ Find the range of the invariant
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One non-trivial ideal

Elliott, Rardam, Eilers-Restorff-R
KT (A ) :

S1IX.

Ko(l) —— Ko(A) —— Ko(A/)

of |o

Ki(A/l) <— Ki(A) <— Ki(/)

is a complete stable isomorphism invariant provided that Ky(A) has
the lexicographic ordering in the case

Q—0O
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Filtered K-theory

Let A be a C*-algebra with finitely many ideals. Suppose we have
ideals /1 < L < k3 of A. Then

0—>/2/I1 —>13/I1 —>I3//2—>0

is a short exact sequence of C*-algebras. Hence, we get

Ko(k/h) —= Ko(ls/ ) —> Ko(ls/ )

of |o

Ki(l/k) <— Ki(k/h) <— Ki(k/h)

K., (A) is the collection of all K-groups, equipped with order on K
and the natural transformations {..., 7., 0}.
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Simple
K. (A) is the ordered K-theory of A,
(Ko(A), Ko(A)+, K1(A))
One-ideal
K.i.a(A) is the six-term exact sequence in K-theory

Ky () —— K{ (A) ——= K5 (A/])

aT la

K1 (A1) <— Ki(A) Ki(l)

induced by
0—-/—-A—A/l—-0
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Isomorphism
KI&H(A) = Kjee\l(B)
if there exists a lattice isomorphism
B : Lat(A) — Lat(B)
and for all Iy </ ideals of A, there exists a group isomorphism
al®: Ki(l/h) = K.(B(k)/B(H))

preserving all natural transformations and order.

Ko(k/l) —= Ko(l/l1) ——= Ko(I/ k)

of lo

Ki(ls/ k) <—— Ki(l/h) <-— Ki(l2/h)
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Purely infinite C*-algebras

Kirchberg

‘ . O Let A and B be C*-algebras with primitive
ideal space X. Then

\ \ ARK=B®K
O*)’*)‘ if and only if

A ~KKx 87

i.e., there exists an invertible element in
KK(X; A, B).

Question
Does K;jo,(A) = Kf., (B) imply that A ~kx, B? J
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Non-real rank zero counterexample

Primitive ideal space Counterexample (Meyer-Nest)
‘ ‘ O There exist A and B such that
o Ki (A=K (B)

ideal ideal
\ T / @ A #kky B.

‘ Consequently, Ao K % B® K.

Arklint-Restorff-R
If RR(A) = RR(B) = 0, then
K+

ideal

Consequently, K[.,,(A) = K., (B) ifand only if A9 K~ Be K.

(A) = Kia(B) = A~k B
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Real rank zero counterexample

Primitive ideal space
/ 0\
O\ /0
*

v

Arklint-Bentmann-Katsura

Counterexample
There exist A and B with real rank zero
such that

o KT

ideal

oA 7(’KKX B.
Consequently, A K 2 B® K.

(A) = Kijea(B)

If RR(A) = RR(B) = 0 and the Ki-groups are free, then

K+

ideal

(A) = Kju(B) <= A~kky B

Consequently, Ki.,,(A) = K.,(B) ifand only if A9 K~ B® K.
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Directed graphs

Definition Example
A graph E = (E°, E", rg, sg) consists of ﬂ
g 0 N TN o0
@ a countable set of vertices E®; ®re(e) <« ®se(e) ___O=—>©
e

@ a countable set of edges E'; and
@ functions sg, re : E' — EO.

Definition
° Es?ng: v is a singular vertex if v is a sink or v emits infinitely

many edges.

e EC : vis aregular vertex if v is not a singular vertex.

reg
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Graph C*-algebras

Graph C*-algebra

A directed graph E = (E°, E', rg, sg) defines a C*-algebra C*(E)
given as the universal C*-algebra generated by projections

{p, : v € E°} and a partial isometries {s, : e € E'} satisfying the
Cuntz-Krieger relations:

(1) pvpw =0 forall v,w € E® with v # w;
(2) stsy=0forall e, fc E'"with e # f;
(3) S3Se = Pre(e) aNd S¢S} < Ps,(e) for all e € ET;

(4) for every v € E?

reg?

Py = Z SeSs

ecsz'(v)
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Properties of graph C*-algebras

Theorem (Dichotomy)
For a simple graph C*-algebra C*(E)

E has no loops

C*(E) is AF

All vertices in E can reach
at least two loops

C*(E) purely infinite
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Theorem
If C*(E) has finitely many ideals, then
@ every ideal of / is isomorphic to a graph C*-algebra

@ every quotient of C*(E) is isomorphic to a graph C*-algebra.

Corollary
C*(E):

00

AN
-9 -0
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Non-real rank zero counterexample revisited

Primitive ideal space Counterexample (Meyer-Nest)

‘ c C There exist A and B such that
° K+ (A) = ’(i;ii_eal(B)

ideal
\ T / ° A9K % BoK.

Question
Can A and B be graph C*-algebras?

v

Theorem
Graph C*-algebras with finitely many ideals have real rank zero. J

Arklint-Restorff-R
A and B are not graph C*-algebras! J




Graph C* -algebras
000000

Real rank zero counterexample revisited

Primitive ideal space Counterexample

There exist A and B with real rank zero
such that

o
/ \ ° l(i:ii_eal(A) = l{i::l:al(B)
O\ / o 0 AR K% BaK. |
‘ Question
y Can A and B be graph C*-algebras?
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K-theory of graph C*-algebras

Drinen-Tomforde

0@ = nvr ([F5H]) ana oo =rer ([P 5

where the adjacency matrix of E with respect to the decomposition

E° = EQ, U EY,, is of the form
B C
e
/) 210 0
L S 1.0 1 0
d'\/ ~ 0= ° AE=10 1 0 oo
0 00 O
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Free Kj

Corollary
The K; groups of each quotient of C*(E) is free. }

Primitive ideal space Counterexample

There exist A and B with real rank zero
such that

"
/ \ ® }(ijeﬂ(A) = ,qgeal(B)
o *

0o A9K % B®K.

NS ’
9

Question
‘ Can A and B be graph C*-algebras?

Arklint-Bentmann-Katsura
A and B are not graph C*-algebras! }




Graph C* -algebras
000000e

Conijecture (Eilers-Restorff-R)

If C*(E) and C*(F) are graph C*-algebras with finitely many ideals.
Then
C'(E) K= C*"(F)®K

if and only if
I{ijeal(c*(E)) = K?lreal(c*(,:))

(at least when K} (C*(F)) and K.,

ideal

(C*(F)) are finitely generated).
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One non-trivial ideal

@ 9O O 9O O 90 o 0
Elliott, Rerdam, Eilers-Tomforde
Kidea(C*(E)) :

Ko(l) —— Ko(C*(E)) —> Ko(C*(E)/1)

of I

Ki(C*(E)/I) <-— K:(C*(E)) Ki(l)

Ly

determines C*(E) up to stable isomorphism among all graph
C*-algebras with a unique non-trivial ideal. The order of Ko(C*(E)) is
redundant unless C*(E) is AF.

y
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Linear ideal lattice

Elliott, Eilers-Restorff-R

K1..,(C*(E)) determines C*(E) up to stable isomorphism among all
graph C*-algebras of the above form. The order of Ko(C*(E)) is
redundant unless C*(E) is AF.
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Accordian spaces

A®K =~ BgKifand only if KT (A) = K1 (B).

ideal

Bentmann-Kohler J

A
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Source Removable

Source Removable (S)
020 ) N o)) J
E ° %QQ QQ

C*(E) | 3ideals 2 ideals
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Reduction

Reduction (R)

A A
o ~o——o N e o
E 00209 —=09

C*(E) 4 ideals 3 ideals



Out-splitting

Out-splitting (O)
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In-splitting

T [e.°]
o _o—=0o
In-splitting (I)
o
e To=20 AN o °
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Moves (S), (R), (O), () and Morita equivalence

Theorem

Moves (S) and (R) induce strongly Morita equivalent graph
C*-algebras.

Bates-Pask

Moves (O) and (I) induce strongly Morita equivalent graph
C*-algebras.
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Cuntz-Splice

Cuntz-Splice
M ( M
Joas
( @)
0 o o

C*(E) | C(T) Purely infinite
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Cuntz-Splice and Morita Equivalence

Cuntz-Rerdam, Restorff

Move (C) induces strongly Morita equivalent Cuntz-Krieger algebras
satisfying Condition (K).

Definition
Ais a Cuntz-Krieger algebra if A= C*(E) where E is a finite graph
with no sinks and no sources.

Eilers-Sgrensen-R, (work in progress)

Move (C) induces strongly Morita equivalent graph C*-algebras, for
unital graph C*-algebras.
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Classification Cuntz-Krieger algebras

Restorff
Let C*(E) and C*(F) be Cuntz-Krieger algebras with finitely many
ideals. Then
C(E) K= C*(F)®K
if and only if
’(iZILeaI(C*(E)) = Igjeal(c*(,:))' )
Corollary

The equivalence relation

on the class of finite graphs with no sinks and sources satisfying
Condition (K) is the equivalence relation generated by Moves (S), (R),
(O), (), and (C).

V.
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Classification of Amplified graphs

Amplified graphs

oio\i

0 ——0—-29

Eilers-Sgrensen-R
The equivalence relation

E~eF < CYE)®K=C*(F)®K

on the class of amplified graphs with finitely many vertices is the
equivalence relation generated by Moves (S), (R), (O), and (I).
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