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Operator Spaces-

Natural Quantization of Banach Spaces
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Banach Spaces

A Banach space is a complete normed space (V/C, ‖ · ‖).

In Banach spaces, we consider

Norms and Bounded Linear Maps.

Classical Examples:

C0(Ω), M(Ω) = C0(Ω)∗, `p(I), Lp(X,µ), 1 ≤ p ≤ ∞.
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Hahn-Banach Theorem: Let V ⊆W be Banach spaces. We have

W

↑ ↘ ϕ̃

V
ϕ−−−→ C

with ‖ϕ̃‖ = ‖ϕ‖.

It follows from the Hahn-Banach theorem that for every Banach space

(V, ‖ · ‖) we can obtain an isometric inclusion

(V, ‖ · ‖) ↪→ (`∞(I), ‖ · ‖∞)

where we may choose I = V ∗1 to be the closed unit ball of V ∗.

So we can regard `∞(I) as the home space of Banach spaces.
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Classical Theory Noncommutative Theory

`∞(I) B(H)

Banach Spaces Operator Spaces
(V, ‖ · ‖) ↪→ `∞(I) (V, ??) ↪→ B(H)

norm closed subspaces of B(H)?
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Matrix Norm and Concrete Operator Spaces [Arveson 1969]

Let B(H) denote the space of all bounded linear operators on H. For

each n ∈ N,

Hn = H ⊕ · · · ⊕H = {[ξj] : ξj ∈ H}

is again a Hilbert space. We may identify

Mn(B(H)) ∼= B(H ⊕ . . .⊕H)

by letting [
Tij

] [
ξj

]
=

∑
j

Ti,jξj

 ,
and thus obtain an operator norm ‖ · ‖n on Mn(B(H)).

A concrete operator space is norm closed subspace V of B(H) together

with the canonical operator matrix norm ‖ · ‖n on each matrix space

Mn(V ).
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Examples of Operator Spaces

• C*-algebras A, i.e. norm closed *-subalgebras of some B(H)

• A = C0(Ω) or A = Cb(Ω) for locally compact space

• Reduced group C*-algebras C∗λ(G), full group C*-algebras C∗(G)

• von Neumann algebras M , i.e. strong operator topology (resp. w,o.t,

weak* topology) closed *-subalgebras of B(H)

• L∞(X,µ) for some measure space (X,µ)

• Group von Neumann algebras L(G)
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Group C*-algebras and Group von Neumann Algebras

Let G be a discrete group. For each s ∈ G, there exists a unitary

operator λs on `2(G) given by

λsξ(t) = ξ(s−1t)

We let

C∗λ(G) = λ(C[G])
‖·‖

= span {λs}
‖·‖

denote the reduced group C*-algebra of G.

We let

L(G) = λ(C[G])
s.o.t ⊆ B(L2(G))

be the left group von Neumann algebra of G.
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If G is an abelian group, then we have

λs ◦ λt = λst = λts = λt ◦ λs.

Then C∗λ(G) is a commutative C*-algebra and L(G) is a commutative

von Neuman algebra. In fact, we have

C∗λ(G) = C0(Ĝ) and L(G) = L∞(Ĝ),

where Ĝ = {χ : G→ T : continuous homo} is the dual group of G.

Example: Let G = Z. Then Ẑ = T and we have

C∗λ(Z) = C(T) and L(Z) = L∞(T).

Therefore, for a general group G, we can regard C∗λ(G) and L(G) as the

dual object of C0(G) and L∞(G), respectively.
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Full Group C*-algebra

Let πu : G→ B(Hu) be the universal representation of G. We let

C∗(G) = πu(L1)
‖·‖

denote the full group C*-algebra of G.

It is known that we have a canonical C*-algebra quotient

πλ : C∗(G)→ C∗λ(G).
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Completely Bounded Maps

Let ϕ : V → W be a bounded linear map. For each n ∈ N, we can define

a linear map

ϕn : Mn(V )→Mn(W )

by letting

ϕn([vij]) = [ϕ(vij)].

The map ϕ is called completely bounded if

‖ϕ‖cb = sup{‖ϕn‖ : n ∈ N} <∞.

We let CB(V,W ) denote the space of all completely bounded maps from

V into W .

In general ‖ϕ‖cb 6= ‖ϕ‖. Let t be the transpose map on Mn(C). Then

‖t‖cb = n, but ‖t‖ = 1.
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Theorem: If ϕ : V → W = Cb(Ω) is a bounded linear map, then ϕ is

completely bounded with

‖ϕ‖cb = ‖ϕ‖.

Proof: Given any contractive [vij] ∈Mn(V ), [ϕ(vij)] is an element in

Mn(Cb(Ω)) = Cb(Ω,Mn) = {[fij] : x ∈ Ω→ [fij(x)] ∈Mn}.

Then we have

‖[ϕ(vij)]‖Cb(Ω,Mn) = sup{‖[ϕ(vij)(x)]‖Mn : x ∈ Ω}

= sup{|
n∑

i,j=1

αiϕ(vij)(x)βj| : x ∈ Ω, ‖α‖2 = ‖β‖2 = 1}

= sup{|ϕ(
n∑

i,j=1

αivijβj)(x)| : x ∈ Ω, ‖α‖2 = ‖β‖2 = 1}

≤ ‖ϕ‖ sup{‖[αi][vij][βj]‖ : ‖α‖2 = ‖β‖2 = 1}
≤ ‖ϕ‖‖[vij]‖ ≤ ‖ϕ‖.

This shows that ‖ϕn‖ ≤ ‖ϕ‖ for all n = 1,2, · · · . Therefore, we have

‖ϕ‖ = ‖ϕ2‖ = · · · = ‖ϕn‖ = · · · = ‖ϕ‖cb.
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Arveson-Wittstock-Hahn-Banach Theorem

Let V ⊆W ⊆ B(H) be operator spaces.

W

↑ ↘ ϕ̃

V
ϕ−−−→ B(H)

with ‖ϕ̃‖cb = ‖ϕ‖cb.

In particular, if B(H) = C, we have ‖ϕ‖cb = ‖ϕ‖. This, indeed, is a

generalization of the classical Hahn-Banach theorem.
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Column and Row Hilbert Spaces

Let H = Cm be an m-dimensional Hilbert space .

Hc: There is a natural column operator space structure on H given by

Hc = Mm,1(C) ⊆Mm(C).

Hr: Similarly, there is a row operator space structure given by

Hr = M1,m(C) ⊆Mm(C).

Moreover, Pisier introduced an OH structure on H by considering the

complex interperlation over the matrix spaces

Mn(OH) = (Mn(Hc),Mn(Hr))1
2

= (Mn(MAX(H)),Mn(MIN(H)))1
2
.

All these matrix norm structures are distinct from MIN(H) and MAX(H).
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Dual Operator Spaces

Let V be an operator space. Then the dual space

V ∗ = B(V,C) = CB(V,C)

has a natural operator space matrix norm given by

Mn(V ∗) = CB(V,Mn(C)).

We call V ∗ the operator dual of V .
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More Examples

• T (`2(N)) = K(`2(N))∗ = B(`2(N))∗;

• M(Ω) = C0(Ω)∗, operator dual of C*-algebras A∗;

• L1(X,µ) = L∞(X,µ)∗, operator predual of von Neumann algebras R∗;

• Fourier algebra A(G) = L(G)∗

• Fourier-Stieltjes algebra B(G) = C∗(G)∗
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Operator Space Structure on Lp spaces

• Lp-spaces Lp(X,µ)

Mn(Lp(X,µ)) = (Mn(L∞(X,µ)),Mn(L1(X,µ)))1
p
.

• Non-commutative Lp-spaces Lp(R,ϕ),

Mn(Lp(R,ϕ)) = (Mn(R),Mn(Rop∗ ))1
p
,

where Rop∗ is the operator predual of the opposite von Neumann algebra

Rop.
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Grothendick’s Approximation Property
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Grothendick’s Approximation Property

A Banach space is said to have Grothendicks’ AP if there exists a net

of bounded finite rank maps Tα : V → V such that Tα → idV uniformly

on compact subsets of V.

We note that a subset K ⊆ V is compact if and only if there exists a

sequence (xn) ∈ c0(V ) such that

K ⊆ conv{xn}
‖·‖ ⊆ V.

Therefore, V has Grothendick’s AP if and only if there exists a net of

finite rank bounded maps Tα on V such that

‖(Tα(xn))− (xn)‖c0(V ) → 0

for all (xn) ∈ c0(V ).
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Operator Space Approximation Property

An operator space V is said to have the operator space approximation

property (or simply, OAP) if there exists a net of finite rank bounded

maps Tα on V such that

‖[Tα(xij)]− [xij]‖K∞(V ) → 0

for all [xij] ∈ K∞(V ), where we let K∞(V ) = ∪∞n=1Mn(V ).

In this case, we say that Tα → idV in the stable point-norm topology.

We say that V ⊆ B(H) has the strong OAP if we can replace K∞(V )

by B(`2)⊗̌V , which is the norm closure of B(`2)⊗ V in B(`2 ⊗ `2(G)).
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For any discrete group C*-algebra A = C∗λ(G),

Nuclearity⇒ CBAP⇒ strong OAP = OAP ⇒ Exactness.
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Nuclearity

An operator space (or a C*-algebra) V is said to be nuclear if there

exists two nets of completely contractive maps

Sα : V →Mn(α) and Tα : Mn(α) → V

such that

‖Tα ◦ Sα(x)− x‖ → 0

for all x ∈ V .

CCAP and CBAP

An operator space V is to have the CBAP (resp. CCAP) if there exists

a net of comletely bounded (resp. completely contractive) finite rank

maps Tα : V → V such that

‖Tα(x)− x‖ → 0

for all x ∈ V .
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Exact Operator Spaces

An operator space (or a C*-algebra) V ⊆ B(H) is said to be exact if

there exists two nets of completely contractive maps

Sα : V →Mn(α) and Tα : Mn(α) → B(H)

such that

‖Tα ◦ Sα(x)− x‖ → 0

for all x ∈ V .
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For any discrete group C*-algebra A = C∗λ(G),

Nuclearity⇒ CBAP⇒ strong OAP = OAP ⇒ Exactness.

• C∗λ(Fn) has CCAP, but not nuclear

• C∗λ(Z2 o SL(2,Z) has the OAP, but not CBAP

Question: It has been an open question for a while that for any C*-

algebra,

whether exactness implies OAP.

25



Theorem [J-R]: Let G be a discrete group.

1. G has the AP, i.e. C*-algebra C∗λ(G) has the OAP, if and only if

A(G) = L(G)∗ has the OAP.

2. If G has the AP, the Lp(L(G)) has the OAP for any 1 < p <∞.

3. Suppose that G has the AP and is residually finite. Then Lp(L(G))

has the CCAP.

We wondered that G = SL(3,Z) should be an example such that

C∗λ(G) is exact, but does not have the OAP.
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Theorem [Lafforgue and de la Salle]: For 1 < p <∞, Lp(L(SL(3,Z)))

does not have the CBAP. Therefore,

C∗λ(SL(3,Z)) does not have the OAP.

More precisely, they proved that SL(3,R) does not have the AP.

Theorem [Haagerup]: Sp(2,R) does not have the AP.

It follows that all connected simple Lie groups with finite center and

real rank greater or equal to two does not have the AP.
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Exactness is a Local Operator Space Property !
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Local Property of Banach Spaces

It is known from the Hahn-Banach theorem that given any finite dimen-

sional Banach space V , there exists an isometric inclusion

V ↪→ `∞(N).

Question: If V is finite dimensinal, can we

“approximately embed” V into a finite dimensional `∞(n)

for some positive integer n ∈ N ?
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Finite Representability in {`∞(n)}

Theorem: Let E be a f.d. Banach space. For any ε > 0, there exsit

n(ε) ∈ N and F ⊆ `∞(n(ε)) such that

E
1+ε∼= F,

i.e., there exists a linear isomorphism T : E → F such that

‖T‖ ‖T−1‖ < 1 + ε.

Therefore, we say that

• Every f.d. Banach space E is representable in {`∞(n)};

• Every Banach space V is finitely representable in {`∞(n)}.
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Proof: Since E∗ is finite dim, the closed unit ball E∗1 is totally bounded.

For arbitrary 1 > ε > 0, there exists finitely many functionals f1, · · · , fn ∈
E∗1 such that for every f ∈ E∗1, there exists some fj such that

‖f − fj‖ <
ε

1 + ε
.

Then we obtain a linear contraction

T : x ∈ E → (f1(x), · · · , fn(xn)) ∈ `∞n .

For any f ∈ E∗1, we let fj such that ‖f − fj‖ < ε
1+ε. Then we get

‖T (x)‖ ≥ |fj(x)| ≥ |f(x)| − |f(x)− fj(x)| ≥ |f(x)| −
ε‖x‖
1 + ε

.

This shows that

‖T (x)‖ ≥ ‖x‖ −
ε‖x‖
1 + ε

=
‖x‖

1 + ε
.

Therefore, ‖T−1‖ < 1 + ε.
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Finite Representatility of Operator Spaces in {Mn}

An operator space V is called finitely representable in {Mn} if for every

f.d. subspace E and ε > 0, there exist n(ε) ∈ N and F ⊆Mn(ε) such that

E
1+ε∼= cb F,

i.e., there exists a linear isomorphism T : E → F such that

‖T‖cb ‖T−1‖cb < 1 + ε.

It is natural to ask

whether every finite dim operator space is representable in {Mn},

or

whether every operator space is finitely representable in {Mn} ?
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Theorem [Pisier 1995]: Let `1(n) be the operator dual of `∞(n). If

T : `1(n)→ F ⊆Mk

is a linear isomorphism, then for n ≥ 3

‖T‖cb‖T−1‖cb ≥ n/2
√
n− 1.

Hence for n ≥ 3,

`1(n) ↪→ C∗(Fn−1) ⊆ B(Hπ)

are note finitely represenetable in {Mn}.

So C∗(Fn−1) and B(Hπ) are examples of non-exact C*-algebras.

Theorem [Pisier 1995]: An operator space (or C*-algebra) V is finitely

representable in {Mn} if and only if V is exact.
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Finite Representability in {`1(n)}

We say that a Banach space V is finitely representable in {`1(n)} if for

any f.d. subspace E ⊆ V and ε > 0, there exsit n(ε) ∈ N and F ⊆ `1(n(ε))

such that

E
1+ε∼= F,

i.e., there exists a linear isomorphism T : E → F such that

‖T‖ ‖T−1‖ < 1 + ε.

It is known that a Banach space V is finitely represebtable in {`1(n)} if

and only if there exists an L1(µ) space such that we have the isometric

inclusion

V ↪→ L1(µ).
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Finite Representability in {Tn}

An operator space V is finitely representable in {Tn} if for any f.d.

subspace E and ε > 0, there exist n(ε) ∈ N and F ⊆ Tn(ε) such that

E
1+ε∼= cb F,

i.e., there exists a linear isomorphism T : E → F such that

‖T‖cb ‖T−1‖cb < 1 + ε.

• If A is a nuclear C*-algebra, then A∗ and A∗∗∗ are finitely representable

in {Tn}. For example

C(X)∗, T (`2), , B(`2)∗.

• C∗λ(F2)∗ is finitely representable in {Tn}.
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Question: Is the predual M∗ of a von Neumann algebra is finitely rep-

resentable in {Tn} ?

Theorem [E-J-R 2000]: Let M be a von Neumann algebra. Then M∗
is finitely representable in {Tn} if and only if M has the QWEP, i.e. M

is a quotient of a C*-algebra with Lance’s weak expectation proeprty.

A C*-algebra has the WEP if for the universal representation π : A →
B(H), there exists a completely positive and contraction P : B(H)→ A∗∗

such that P ◦ π = idA.

A. Connes’ conjecture 1976: Every finite von Neumann algebra with

separable predual is ∗-isomorphic to a von Neumann subalgebra of the

ultrapower of the hyperfinite II1 factor

M ↪→
∏
U
R0.

E. Kirchberg ’s conjecture 1993: Every C∗-algebra has QWEP.

36



Thank you for your attention !
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