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Background

1. Total error probability:

p1, p2 . hypothetic states on CY
: density matrix on C%, that is
pi >0, Tr(p;) =1 (1=1,2)
E ={FE1, E>} : quantum multiple test
. d X dprojections 1 + F> =1
Succ;(F) := Tr(p; E;) (1 =1,2)
Err;(F) := 1 — Succ;(E) = Tr(p;(1 — E;))

1 1
Err(F) := iTr(plEg) -+ §Tr(p2E1)

1

— 5{1 — Tr(Ei(p1 — p2))}

— Typeset by Foil TEX — 2



2. Assymptotic error exponent for p; and ps

Vne N Eq,):d" x d"quantum multiple test

Err(E,) = %{1 — Tr(Eqy (pF" — p5™))}

1
If the limit lim,, o, ——log Err,,(E(,)) exists, we
n

refer to it as the asymptotic error exponent.

3. The quantum Chernoff bound for p; and po

1—s s

EooB(p1, p2) = —10g0%g£1Tr(p1 p3).
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Theorem 1. (M. Nussbaum and A. Szkola 2006,
K. M. R. Audenaert, et al.2006)

Let {p1, p2} be hypothetic states on C* and E,,)

be a support projections on (p?" — p3™). Then one
has

(oo = lim —log Err, (E(,,))

n—aoo

In the proof of Theorem 1 the following inequality
played a kye role.

Theorem 2. (K. M. R. Audenaert et al. 2011) For
any positive matrices A and B on C% we have

%(TrA +TeB — Tr|A — B|) < Tr(A"*B%) (s € [0,1]).

1
When s = o1 Powers and Stgrmer proved the

inequality in 1970.
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Formulation

If we consider a function f(¢) = t'7° and
t : : :
g(t) = t° = ——, then the previous inequality can be

f(t)

reformed by

(1)
S(TRA+TrB-Tr| A B) < Te(f(4)'T'g(B)f(4)'T)

Problem 3. Let n € N. When the inequality holds
for any n x n positive definite matrices A and B 7

For 0 < s < 1 since the function t — t° is
operator monotone on [0, 00), we may hope that the

inequality holds when f is operator monotone on
0, 00).
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Definition 4.1. A function f is sait to be matriz
convexr of order n or n-convex in short (resp.
matrix concave of order mn or n-concave)
whenever the inequality

FAA+(1=A)B) < Af(A)+(1-A)f(B), A € [0,1]

(resp. f(AA + (1 — NB) > Af(A) + (1 —
AN f(B), A € [0,1]) holds for every pair of
selfadjoint matrices A, B € M, such that all
eigenvalues of A and B are contained in 1.

2. A function f is said to be Matriz monotone
functions on I are similarly defined as the
inequality

A< B= f(A) < f(B)

for any pair of selfadjoint matrices A, B € M,
such that A < B and all eigenvalues of A and B
are contained in [.

We call a function f operator convexr (resp.
operator concave) if for each k € N, f is k-
convex (resp. k-concave) and operator monotone
if for each £k € N f is k-monotone.
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Example 5. Let f(t) = % on (0, 00). It is well-known
that f is not 2-monotone. We now show that the

function f does not satisfy the inequality (1). Indeed,
let us consider the following matrices

1 1 2 1
A:(l 1) and Bz(l 2).

Then we have

2
AB™'A =ZA.
3
Set A = A & diag(l,---,1),B = B &
n—2
diag(1,---,1) in M,. Then, A < B and for any
N —

n—2
positive linear function ¢ on M,
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~

On the contrary, since A < B, from the
inequality (1) we have

~ ~ ~ ~

o(A) + o(B) — o(B — A) < 20(f(A)2g(B) f(A)?),

or

~ ~

1, ~ ~ 1
p(A) < o(f(A)2g(B)f(A)2),
and we have a contradiction. [ ]
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Theorem 6. (D. T. Hoa-O-H. M. Toan 2012)

Let f be a 2n-monotone function on [0, co) such
that f((0,00)) C (0,00). Then for any pair of
positive matrices A, B € M,,(C)

N|—
N|—=

Tr(A)+Tr(B)-Tr(|A=B|) < 2Tr(f(A)2(A)g(B)f(A)?)

The point of the proof is the n-monotonicity of
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Double piling structure of matrix

monotone functions and matrix convex

functions

1. P,(I) : the spaces of n-monotone functions

2. P (I) : the space of operator monotone functions

3. K,(I) : the space of n-convex functions

4. Koo(I) : the space of operator convex functions

The we have

P(I)2D-- 2P, 1(I) D P,(I) D Pypr(I) D ---

Ppia(I) € Po(I)  Kpia(I) € Kn(I)
Poo =M1 Po(I) Koo = NpZ 1 Kn(1)
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Theorem 7. Let consider the following three
assertions.

(i) f(0) <0 and f is n-convex in [0, «),

(ii) For each matrix a with its spectrum in [0, «) and
a contraction c in the matrix algebra M,,,

f(c*ac) < e f(a)e,

(iii) The function @ (= g(t)) is n-monotone in (0, ).

1. (Hansen-Pedersen:1985) Three assertions are
equivalent if f is operator convex. In this case a
function g is operator monotone.

2. (O-Tomiyama:2009)

(i)n—l—l < (”)n ~ (”Z)n < (Z)[

NS

]

where denotion (A),, < (B), means that "“if (A)
holds for the matrix algebra M,,, then (B) holds
for the matrix algebra M,,".
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Using an idea in [Hansen-Pedersen:1985] we can
show the following result.

Proposition 8. (D. T. Hoa-O-H. M. Toan 2012)

Under the same condition in Theorem 7 consider the
following assetions.

(iv) f is 2n-monotone.
(v) The function 75 is n-monotone in (0, a).

We have, then, (iv)a, < (V).
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Theorem 6: Let f be a 2n-monotone function on
0, 00) such that f((0,00)) C (0,00). Then for any
pair of positive matrices A, B € M, (C)

Te(A)+Tr(B)—Tr(|A—B|) < 2Tr(f(A)3(A)g(B) f(A)?)

Sketch of the proof:

A, B : positive matrices
A-B=(A-B)y—(A-B)_=P—-Q,
A—B|=P+Q.

We may show that

Tr(A) — Tr(f(A)2(A)g(B) f(A)?) < Tr(P)

holds.

Tr(A) — Te(f(A)2(A)g(B)f(A)2)

= Tr(f(A)2g(A) f(A)2) — Te(f(A)2(A)g(B)f(A)?)

< Tr(f(A)29(B + P)f(A)2) — Te(f(A)2(A)g(B) f(A)?)

< Te(f(B+ P)2(g(B + P) — g(B))f(B + P)?)

< Tr(f(B + P)2g(B + P)f(B + P)%) — Tr(f(B)2g(B) f(B)?
= Tr(P)
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Since any C*-algebra can be realized as a closed
selfadjoint x-algebra of B(H) for some Hilbert space
H. We can generalize Theorem 6 in the framework
of C*-algebras.

Theorem 9. (D. T. Hoa-O-H. M. Toan 2012)

Let 7 be a tracial functional on a C'*-algebra A,
f be a strictly positive, operator monotone function
on [0,00). Then for any pair of positive elements

A, Be A

7(A) +7(B) — 7(|A = B|) < 27(f(A)2g(B) f(A)?),

where g(t) = tf(t)~1.
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Chracterizations of the trace property

The generalized Powers-Stgrmer inequality
implies the trace property for a positive linear
functional on operator algebras.

Lemma 10. (D. T. Hoa-O-H. M. Toan 2012)

Let © be a positive linear functional on M,, and
f be a continuous function on [0,00) such that
f(0) =0 and f((0,00)) C (0,00). If the following
inequality

(2) @(A+B)—p(|A—B|) < 20(f(A)2g(B)f(A)?)

holds true for all A, B € M, then ¢ should be a
positive scalar multiple of the canonical trace Tr on

M,,, where g(t) = { @ Ez i (0(;, >0))
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Let © be a positive linear functional on M,, and
s € [0,1]. From Lemma 10 it is clear that if the
following inequality

(3) ¢(A+B)—p(|A—B|) <2p(A T BAT)
holds true for any A, B € M., then ¢ is a tracial.

In particular, when s = 0 the following inequality
characterizes the trace property

(4) ¢(B) —¢(A) < p(|A-B|) (A,BeM,)

From this observation we have

Corollary 11. (Stolyarov-Tikhonov-Sherstnev:2005)
Let © be a positive linear functional on M, and
the following inequality

(5) p(lA+ BJ) < ¢(|4]) + «(|B])

holds true for any self-adjoint matrices A, B € M,,.
Then ¢ is a tracial.
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Corollary 12. (Gardner:1979) Let ¢ be a positive
linear functional on M, and the following inequality

(6) o(A)] < o(|A])

holds true for any self-adjoint matrix A € M,,. Then
@ is a tracial.
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Theorem 13. (D. T. Hoa-O-H. M. Toan 2012)

Let ¢ be a positive normal linear functional
on a von Neumann algebra M and f be a
continuous function on [0,00) such that f(0) = 0
and f((0,00)) C (0,00). If the following inequality
(7)

1
p(A) +¢(B) —¢(|A = B|) < 2¢0(f(A)29(B)f(A)

N|—=

)

holds true for any pair A, B € M™, then ¢ is a trace,

= (t € (0,00))
where g(t) = { fé) (t=0)
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Let A be a von Neumann algebra and ¢ be a
positive linear functional on A. In the case of the
inequality (7) the set P(.A) is not enough as a testing
set.

Indeed, let p, g be arbitrary orthogonal projections
from a von Neumann algebra M. Since ¢ > p A q it

follows that pgp > p(p A q)p = p A q. So pgp > p A q
holds for any pair of projections. From that it follows

o(p+a—|p—al) = 20(pAg) < 20(pap) = 20(f(p)?9(a) f (p)?
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Corollary 14. Let ¢ be a positive linear functional on
a C'*-algebra A and f be a continuous function on
[0, 00) such that f(0) = 0 and f((0,00)) C (0, 0).
If the following inequality

(8) 1 1
p(A) +(B) —¢(|A—B|) < 2¢(f(A)2g9(B)f(A)?)

holds true for any pair A, B € A™, then ¢ is a tracial
t
. - (t € (0,00))
functional, where g(t) = < f® ( ’ .
uncti W g(t) { 0 (t=0)

Take the universal representation m of A and
consider enveloping von Neumann algebra M =
w(A)”. Apply the previous Theorem to the normal
positive functional ¢ on M such that ¢(7w(A)) =

p(A) for A € A.
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