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Background

1. Total error probability:

ρ1, ρ2 : hypothetic states on Cd

: density matrix on Cd, that is

ρi ≥ 0, Tr(ρi) = 1 (i = 1, 2)

E = {E1, E2} : quantum multiple test

: d× dprojections E1 + E2 = 1

Succi(E) := Tr(ρiEi) (i = 1, 2)

Erri(E) := 1− Succi(E) = Tr(ρi(1− Ei))

Err(E) :=
1
2
Tr(ρ1E2) +

1
2
Tr(ρ2E1)

=
1
2
{1− Tr(E1(ρ1 − ρ2))}

– Typeset by FoilTEX – 2



2. Assymptotic error exponent for ρ1 and ρ2

∀n ∈ N E(n) : dn × dnquantum multiple test

Errn(En) :=
1
2
{1− Tr(E(n)(ρ⊗n

1 − ρ⊗n
2 ))}

If the limit limn→∞−1
n

log Errn(E(n)) exists, we

refer to it as the asymptotic error exponent.

3. The quantum Chernoff bound for ρ1 and ρ2

ξQCB(ρ1, ρ2) := − log inf
0≤s≤1

Tr(ρ1−s
1 ρs

2).
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Theorem 1. (M. Nussbaum and A. Szkola 2006,
K. M. R. Audenaert, et al.2006)

Let {ρ1, ρ2} be hypothetic states on Cd and E(n)

be a support projections on (ρ⊗n
1 − ρ⊗n

2 ). Then one
has

ξQCB = lim
n→∞

− log Errn(E(n))

In the proof of Theorem 1 the following inequality
played a kye role.

Theorem 2. (K. M. R. Audenaert et al. 2011) For
any positive matrices A and B on Cd we have

1
2
(TrA + TrB − Tr|A−B|) ≤ Tr(A1−sBs) (s ∈ [0, 1]).

When s =
1
2
, Powers and Størmer proved the

inequality in 1970.
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Formulation

If we consider a function f(t) = t1−s and

g(t) = ts =
t

f(t)
, then the previous inequality can be

reformed by

(1)
1
2
(TrA+TrB−Tr|A−B|) ≤ Tr(f(A)

1−s
2 g(B)f(A)

1−s
2 )

Problem 3. Let n ∈ N. When the inequality holds
for any n× n positive definite matrices A and B ?

For 0 ≤ s ≤ 1 since the function t 7→ ts is
operator monotone on [0,∞), we may hope that the
inequality holds when f is operator monotone on
[0,∞).
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Definition 4. 1. A function f is sait to be matrix
convex of order n or n-convex in short (resp.
matrix concave of order n or n-concave)
whenever the inequality

f(λA+(1−λ)B) ≤ λf(A)+(1−λ)f(B), λ ∈ [0, 1]

(resp. f(λA + (1 − λ)B) ≥ λf(A) + (1 −
λ)f(B), λ ∈ [0, 1]) holds for every pair of
selfadjoint matrices A,B ∈ Mn such that all
eigenvalues of A and B are contained in I.

2. A function f is said to be Matrix monotone
functions on I are similarly defined as the
inequality

A ≤ B =⇒ f(A) ≤ f(B)

for any pair of selfadjoint matrices A,B ∈ Mn

such that A ≤ B and all eigenvalues of A and B
are contained in I.

We call a function f operator convex (resp.
operator concave) if for each k ∈ N, f is k-
convex (resp. k-concave) and operator monotone
if for each k ∈ N f is k-monotone.
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Example 5. Let f(t) = t2 on (0,∞). It is well-known
that f is not 2-monotone. We now show that the
function f does not satisfy the inequality (1). Indeed,
let us consider the following matrices

A =
(

1 1
1 1

)
and B =

(
2 1
1 2

)
.

Then we have

AB−1A =
2
3
A.

Set Ã = A ⊕ diag(1, · · · , 1︸ ︷︷ ︸
n−2

), B̃ = B ⊕

diag(1, · · · , 1︸ ︷︷ ︸
n−2

) in Mn. Then, Ã ≤ B̃ and for any

positive linear function ϕ on Mn
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ϕ(f(Ã)
1
2g(B̃)f(Ã)

1
2) = ϕ(ÃB̃−1Ã)

= ϕ(
2
3
A⊕ diag(1, · · · , 1︸ ︷︷ ︸

n−2

))

< ϕ(A⊕ diag(1, · · · , 1︸ ︷︷ ︸
n−2

))

= ϕ(Ã).

On the contrary, since Ã ≤ B̃, from the
inequality (1) we have

ϕ(Ã) + ϕ(B̃)− ϕ(B̃ − Ã) ≤ 2ϕ(f(Ã)
1
2g(B̃)f(Ã)

1
2),

or
ϕ(Ã) ≤ ϕ(f(Ã)

1
2g(B̃)f(Ã)

1
2),

and we have a contradiction.
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Theorem 6. (D. T. Hoa-O-H. M. Toan 2012)

Let f be a 2n-monotone function on [0,∞) such
that f((0,∞)) ⊂ (0,∞). Then for any pair of
positive matrices A,B ∈ Mn(C)

Tr(A)+Tr(B)−Tr(|A−B|) ≤ 2Tr(f(A)
1
2(A)g(B)f(A)

1
2)

The point of the proof is the n-monotonicity of
g.
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Double piling structure of matrix
monotone functions and matrix convex

functions

1. Pn(I) : the spaces of n-monotone functions

2. P∞(I) : the space of operator monotone functions

3. Kn(I) : the space of n-convex functions

4. K∞(I) : the space of operator convex functions

The we have

P1(I) ⊇ · · · ⊇ Pn−1(I) ⊇ Pn(I) ⊇ Pn+1(I) ⊇ · · · ⊇ P∞(I)

K1(I) ⊇ · · · ⊇ Kn−1(I) ⊇ Kn(I) ⊇ Kn+1(I) ⊇ · · · ⊇ K∞(I)

Pn+1(I) 6⊆ Pn(I) Kn+1(I) 6⊆ Kn(I)

P∞ = ∩∞n=1Pn(I) K∞ = ∩∞n=1Kn(I)
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Theorem 7. Let consider the following three
assertions.

(i) f(0) ≤ 0 and f is n-convex in [0, α),

(ii) For each matrix a with its spectrum in [0, α) and
a contraction c in the matrix algebra Mn,

f(c?ac) ≤ c?f(a)c,

(iii) The function f(t)
t (= g(t)) is n-monotone in (0, α).

1. (Hansen-Pedersen:1985) Three assertions are
equivalent if f is operator convex. In this case a
function g is operator monotone.

2. (O-Tomiyama:2009)

(i)n+1 ≺ (ii)n ∼ (iii)n ≺ (i)[n2 ],

where denotion (A)m ≺ (B)n means that “if (A)
holds for the matrix algebra Mm, then (B) holds
for the matrix algebra Mn”.
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Using an idea in [Hansen-Pedersen:1985] we can
show the following result.

Proposition 8. (D. T. Hoa-O-H. M. Toan 2012)
Under the same condition in Theorem 7 consider the
following assetions.

(iv) f is 2n-monotone.

(v) The function t
f(t) is n-monotone in (0, α).

We have, then, (iv)2n ≺ (v)n.
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Theorem 6: Let f be a 2n-monotone function on
[0,∞) such that f((0,∞)) ⊂ (0,∞). Then for any
pair of positive matrices A,B ∈ Mn(C)

Tr(A)+Tr(B)−Tr(|A−B|) ≤ 2Tr(f(A)
1
2(A)g(B)f(A)

1
2)

Sketch of the proof:

A,B : positive matrices
A−B = (A−B)+ − (A−B)− = P −Q,
|A−B| = P + Q.
We may show that

Tr(A)− Tr(f(A)
1
2(A)g(B)f(A)

1
2) ≤ Tr(P )

holds.

Tr(A)− Tr(f(A)
1
2(A)g(B)f(A)

1
2)

= Tr(f(A)
1
2g(A)f(A)

1
2)− Tr(f(A)

1
2(A)g(B)f(A)

1
2)

≤ Tr(f(A)
1
2g(B + P )f(A)

1
2)− Tr(f(A)

1
2(A)g(B)f(A)

1
2)

≤ Tr(f(B + P )
1
2(g(B + P )− g(B))f(B + P )

1
2)

≤ Tr(f(B + P )
1
2g(B + P )f(B + P )

1
2)− Tr(f(B)

1
2g(B)f(B)

1
2)

= Tr(P )
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Since any C*-algebra can be realized as a closed
selfadjoint ∗-algebra of B(H) for some Hilbert space
H. We can generalize Theorem 6 in the framework
of C*-algebras.

Theorem 9. (D. T. Hoa-O-H. M. Toan 2012)

Let τ be a tracial functional on a C∗-algebra A,
f be a strictly positive, operator monotone function
on [0,∞). Then for any pair of positive elements
A,B ∈ A

τ(A) + τ(B)− τ(|A−B|) ≤ 2τ(f(A)
1
2g(B)f(A)

1
2),

where g(t) = tf(t)−1.
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Chracterizations of the trace property

The generalized Powers-Størmer inequality
implies the trace property for a positive linear
functional on operator algebras.

Lemma 10. (D. T. Hoa-O-H. M. Toan 2012)

Let ϕ be a positive linear functional on Mn and
f be a continuous function on [0,∞) such that
f(0) = 0 and f((0,∞)) ⊂ (0,∞). If the following
inequality

(2) ϕ(A+B)−ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2g(B)f(A)

1
2)

holds true for all A,B ∈ M+
n , then ϕ should be a

positive scalar multiple of the canonical trace Tr on

Mn, where g(t) =
{ t

f(t) (t ∈ (0,∞))
0 (t = 0)

.
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Let ϕ be a positive linear functional on Mn and
s ∈ [0, 1]. From Lemma 10 it is clear that if the
following inequality

(3) ϕ(A + B)− ϕ(|A−B|) ≤ 2ϕ(A
1−s
2 BsA

1−s
2 )

holds true for any A,B ∈ M+
n , then ϕ is a tracial.

In particular, when s = 0 the following inequality
characterizes the trace property

(4) ϕ(B)− ϕ(A) ≤ ϕ(|A−B|) (A,B ∈ M+
n ).

From this observation we have

Corollary 11. (Stolyarov-Tikhonov-Sherstnev:2005)
Let ϕ be a positive linear functional on Mn and
the following inequality

(5) ϕ(|A + B|) ≤ ϕ(|A|) + ϕ(|B|)

holds true for any self-adjoint matrices A,B ∈ Mn.
Then ϕ is a tracial.
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Corollary 12. (Gardner:1979) Let ϕ be a positive
linear functional on Mn and the following inequality

(6) |ϕ(A)| ≤ ϕ(|A|)

holds true for any self-adjoint matrix A ∈ Mn. Then
ϕ is a tracial.
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Theorem 13. (D. T. Hoa-O-H. M. Toan 2012)

Let ϕ be a positive normal linear functional
on a von Neumann algebra M and f be a
continuous function on [0,∞) such that f(0) = 0
and f((0,∞)) ⊂ (0,∞). If the following inequality
(7)

ϕ(A) + ϕ(B)−ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2g(B)f(A)

1
2)

holds true for any pair A,B ∈M+, then ϕ is a trace,

where g(t) =
{ t

f(t) (t ∈ (0,∞))
0 (t = 0)

.
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Let A be a von Neumann algebra and ϕ be a
positive linear functional on A. In the case of the
inequality (7) the set P (A) is not enough as a testing
set.

Indeed, let p, q be arbitrary orthogonal projections
from a von Neumann algebra M. Since q ≥ p ∧ q it
follows that pqp ≥ p(p∧ q)p = p∧ q. So pqp ≥ p∧ q
holds for any pair of projections. From that it follows

ϕ(p+q−|p−q|) = 2ϕ(p∧q) ≤ 2ϕ(pqp) = 2ϕ(f(p)
1
2g(q)f(p)

1
2)
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Corollary 14. Let ϕ be a positive linear functional on
a C∗-algebra A and f be a continuous function on
[0,∞) such that f(0) = 0 and f((0,∞)) ⊂ (0,∞).
If the following inequality
(8)

ϕ(A) + ϕ(B)−ϕ(|A−B|) ≤ 2ϕ(f(A)
1
2g(B)f(A)

1
2)

holds true for any pair A,B ∈ A+, then ϕ is a tracial

functional, where g(t) =
{ t

f(t) (t ∈ (0,∞))
0 (t = 0)

.

Take the universal representation π of A and
consider enveloping von Neumann algebra M =
π(A)′′. Apply the previous Theorem to the normal
positive functional ϕ̂ on M such that ϕ̂(π(A)) =
ϕ(A) for A ∈ A.
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