On generalized Powers-Størmer's Inequality

Hiroyuki Osaka (Ritsumeikan University, Japan)

18 June - 22 June, 2012 Special week on Operator algebras East China Normal University

Plan of talk

- 1. Background (from Quantam information theory)
- 2. Formulation
- 3. Double piling structure of matrix monotone functions and matrix convex functions
- 4. Chracterizations of the trace property

Background

1. Total error probability:

$$\begin{split} \rho_1, \rho_2 : & \textit{hypothetic states on } \mathbf{C}^d \\ & : \textit{density matrix on } \mathbf{C}^d, \textit{that is} \\ & \rho_i \geq 0, \text{Tr}(\rho_i) = 1 \ (i=1,2) \\ E = \{E_1, E_2\} : & \textit{quantum multiple test} \\ & : & \textit{d} \times \textit{dprojections } E_1 + E_2 = 1 \\ & \text{Succ}_i(E) := \text{Tr}(\rho_i E_i) \ (i=1,2) \\ & \text{Err}_i(E) := 1 - \text{Succ}_i(E) = \text{Tr}(\rho_i (1-E_i)) \\ & \text{Err}(E) := \frac{1}{2} \text{Tr}(\rho_1 E_2) + \frac{1}{2} \text{Tr}(\rho_2 E_1) \\ & = \frac{1}{2} \{1 - \text{Tr}(E_1(\rho_1 - \rho_2))\} \end{split}$$

2. Assymptotic error exponent for ρ_1 and ρ_2

$$\forall n \in \mathbf{N} \quad E_{(n)}: d^n \times d^n \text{quantum multiple test}$$

$$\mathrm{Err}_n(E_n):=\frac{1}{2}\{1-\mathrm{Tr}(E_{(n)}(\rho_1^{\otimes n}-\rho_2^{\otimes n}))\}$$

If the limit $\lim_{n\to\infty}-\frac{1}{n}\log\mathrm{Err}_n(E_{(n)})$ exists, we refer to it as the asymptotic error exponent.

3. The quantum Chernoff bound for ρ_1 and ρ_2

$$\xi_{QCB}(\rho_1, \rho_2) := -\log \inf_{0 \le s \le 1} \operatorname{Tr}(\rho_1^{1-s} \rho_2^s).$$

Theorem 1. (M. Nussbaum and A. Szkola 2006, K. M. R. Audenaert, et al.2006)

Let $\{\rho_1, \rho_2\}$ be hypothetic states on \mathbf{C}^d and $E_{(n)}$ be a support projections on $(\rho_1^{\otimes n} - \rho_2^{\otimes n})$. Then one has

$$\xi_{QCB} = \lim_{n \to \infty} -\log \operatorname{Err}_{\mathbf{n}}(E_{(n)})$$

In the proof of Theorem 1 the following inequality played a kye role.

Theorem 2. (K. M. R. Audenaert et al. 2011) For any positive matrices A and B on \mathbb{C}^d we have

$$\frac{1}{2}(\text{Tr}A + \text{Tr}B - \text{Tr}|A - B|) \le \text{Tr}(A^{1-s}B^s) \ (s \in [0, 1]).$$

When $s=\frac{1}{2}$, Powers and Størmer proved the inequality in 1970.

Formulation

If we consider a function $f(t)=t^{1-s}$ and $g(t)=t^s=\frac{t}{f(t)}$, then the previous inequality can be reformed by

(1)
$$\frac{1}{2}(\text{Tr}A + \text{Tr}B - \text{Tr}|A - B|) \le \text{Tr}(f(A)^{\frac{1-s}{2}}g(B)f(A)^{\frac{1-s}{2}})$$

Problem 3. Let $n \in \mathbb{N}$. When the inequality holds for any $n \times n$ positive definite matrices A and B?

For $0 \leq s \leq 1$ since the function $t \mapsto t^s$ is operator monotone on $[0,\infty)$, we may hope that the inequality holds when f is operator monotone on $[0,\infty)$.

Definition 4. 1. A function f is sait to be matrix $convex \ of \ order \ n$ or n-convex in short (resp. $matrix \ concave \ of \ order \ n$ or n-concave) whenever the inequality

$$f(\lambda A + (1-\lambda)B) \le \lambda f(A) + (1-\lambda)f(B), \ \lambda \in [0,1]$$

(resp. $f(\lambda A + (1 - \lambda)B) \ge \lambda f(A) + (1 - \lambda)f(B)$, $\lambda \in [0,1]$) holds for every pair of selfadjoint matrices $A,B \in M_n$ such that all eigenvalues of A and B are contained in I.

2. A function f is said to be $Matrix\ monotone$ functions on I are similarly defined as the inequality

$$A \le B \Longrightarrow f(A) \le f(B)$$

for any pair of selfadjoint matrices $A, B \in M_n$ such that $A \leq B$ and all eigenvalues of A and B are contained in I.

We call a function f operator convex (resp. $operator\ concave$) if for each $k \in \mathbb{N}$, f is k-convex (resp. k-concave) and $operator\ monotone$ if for each $k \in \mathbb{N}$ f is k-monotone.

Example 5. Let $f(t) = t^2$ on $(0, \infty)$. It is well-known that f is not 2-monotone. We now show that the function f does not satisfy the inequality (1). Indeed, let us consider the following matrices

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Then we have

$$AB^{-1}A = \frac{2}{3}A.$$

Set $\tilde{A}=A\oplus \mathrm{diag}(\underbrace{1,\cdots,1}), \tilde{B}=B\oplus \mathrm{diag}(\underbrace{1,\cdots,1})$ in M_n . Then, $\tilde{A}\leq \tilde{B}$ and for any positive linear function φ on M_n

$$\varphi(f(\tilde{A})^{\frac{1}{2}}g(\tilde{B})f(\tilde{A})^{\frac{1}{2}}) = \varphi(\tilde{A}\tilde{B}^{-1}\tilde{A})$$

$$= \varphi(\frac{2}{3}A \oplus \operatorname{diag}(\underbrace{1, \cdots, 1}_{n-2}))$$

$$< \varphi(A \oplus \operatorname{diag}(\underbrace{1, \cdots, 1}_{n-2}))$$

$$= \varphi(\tilde{A}).$$

On the contrary, since $\tilde{A} \leq \tilde{B}$, from the inequality (1) we have

$$\varphi(\tilde{A}) + \varphi(\tilde{B}) - \varphi(\tilde{B} - \tilde{A}) \le 2\varphi(f(\tilde{A})^{\frac{1}{2}}g(\tilde{B})f(\tilde{A})^{\frac{1}{2}}),$$

or

$$\varphi(\tilde{A}) \le \varphi(f(\tilde{A})^{\frac{1}{2}}g(\tilde{B})f(\tilde{A})^{\frac{1}{2}}),$$

and we have a contradiction.

Theorem 6. (D. T. Hoa-O-H. M. Toan 2012)

Let f be a 2n-monotone function on $[0, \infty)$ such that $f((0, \infty)) \subset (0, \infty)$. Then for any pair of positive matrices $A, B \in M_n(\mathbf{C})$

$$Tr(A) + Tr(B) - Tr(|A - B|) \le 2Tr(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}})$$

The point of the proof is the n-monotonicity of g.

Double piling structure of matrix monotone functions and matrix convex functions

- 1. $P_n(I)$: the spaces of n-monotone functions
- 2. $P_{\infty}(I)$: the space of operator monotone functions
- 3. $K_n(I)$: the space of n-convex functions
- 4. $K_{\infty}(I)$: the space of operator convex functions

The we have

$$P_1(I) \supseteq \cdots \supseteq P_{n-1}(I) \supseteq P_n(I) \supseteq P_{n+1}(I) \supseteq \cdots \supseteq P_{\infty}(I)$$

$$K_1(I) \supseteq \cdots \supseteq K_{n-1}(I) \supseteq K_n(I) \supseteq K_{n+1}(I) \supseteq \cdots \supseteq K_{\infty}(I)$$

$$P_{n+1}(I) \not\subseteq P_n(I) \quad K_{n+1}(I) \not\subseteq K_n(I)$$

$$P_{\infty} = \bigcap_{n=1}^{\infty} P_n(I) \qquad K_{\infty} = \bigcap_{n=1}^{\infty} K_n(I)$$

Theorem 7. Let consider the following three assertions.

- (i) $f(0) \leq 0$ and f is n-convex in $[0, \alpha)$,
- (ii) For each matrix a with its spectrum in $[0, \alpha)$ and a contraction c in the matrix algebra M_n ,

$$f(c^*ac) \le c^*f(a)c,$$

- (iii) The function $\frac{f(t)}{t}$ (= g(t)) is n-monotone in $(0, \alpha)$.
 - 1. (Hansen-Pedersen:1985) Three assertions are equivalent if f is operator convex. In this case a function g is operator monotone.
 - 2. (O-Tomiyama:2009)

$$(i)_{n+1} \prec (ii)_n \sim (iii)_n \prec (i)_{[\frac{n}{2}]},$$

where denotion $(A)_m \prec (B)_n$ means that "if (A) holds for the matrix algebra M_m , then (B) holds for the matrix algebra M_n ".

Using an idea in [Hansen-Pedersen:1985] we can show the following result.

Proposition 8. (D. T. Hoa-O-H. M. Toan 2012) Under the same condition in Theorem 7 consider the following assetions.

- (iv) f is 2n-monotone.
- (v) The function $\frac{t}{f(t)}$ is n-monotone in $(0, \alpha)$.

We have, then, $(iv)_{2n} \prec (v)_n$.

Theorem 6: Let f be a 2n-monotone function on $[0,\infty)$ such that $f((0,\infty))\subset (0,\infty)$. Then for any pair of positive matrices $A,B\in M_n(\mathbf{C})$

$$Tr(A) + Tr(B) - Tr(|A - B|) \le 2Tr(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}})$$

Sketch of the proof:

$$A,B$$
 : positive matrices
$$A-B=(A-B)_+-(A-B)_-=P-Q,\\ |A-B|=P+Q.$$
 We may show that

$$\operatorname{Tr}(A) - \operatorname{Tr}(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}}) \le \operatorname{Tr}(P)$$

holds.

$$\operatorname{Tr}(A) - \operatorname{Tr}(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}})$$

$$= \operatorname{Tr}(f(A)^{\frac{1}{2}}g(A)f(A)^{\frac{1}{2}}) - \operatorname{Tr}(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}})$$

$$\leq \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B+P)f(A)^{\frac{1}{2}}) - \operatorname{Tr}(f(A)^{\frac{1}{2}}(A)g(B)f(A)^{\frac{1}{2}})$$

$$\leq \operatorname{Tr}(f(B+P)^{\frac{1}{2}}(g(B+P)-g(B))f(B+P)^{\frac{1}{2}})$$

$$\leq \operatorname{Tr}(f(B+P)^{\frac{1}{2}}g(B+P)f(B+P)^{\frac{1}{2}}) - \operatorname{Tr}(f(B)^{\frac{1}{2}}g(B)f(B)^{\frac{1}{2}}$$

$$= \operatorname{Tr}(P)$$

Since any C*-algebra can be realized as a closed selfadjoint *-algebra of B(H) for some Hilbert space H. We can generalize Theorem 6 in the framework of C*-algebras.

Theorem 9. (D. T. Hoa-O-H. M. Toan 2012)

Let τ be a tracial functional on a C^* -algebra \mathcal{A} , f be a strictly positive, operator monotone function on $[0,\infty)$. Then for any pair of positive elements $A,B\in\mathcal{A}$

$$\tau(A) + \tau(B) - \tau(|A - B|) \le 2\tau(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),$$

where $g(t) = tf(t)^{-1}$.

Chracterizations of the trace property

The generalized Powers-Størmer inequality implies the trace property for a positive linear functional on operator algebras.

Lemma 10. (D. T. Hoa-O-H. M. Toan 2012)

Let φ be a positive linear functional on M_n and f be a continuous function on $[0,\infty)$ such that f(0)=0 and $f((0,\infty))\subset (0,\infty)$. If the following inequality

(2)
$$\varphi(A+B) - \varphi(|A-B|) \le 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$

holds true for all $A, B \in M_n^+$, then φ should be a positive scalar multiple of the canonical trace Tr on

$$M_n$$
, where $g(t)=\left\{ egin{array}{ll} rac{t}{f(t)} & (t\in(0,\infty)) \ 0 & (t=0) \end{array}
ight.$

Let φ be a positive linear functional on M_n and $s \in [0,1]$. From Lemma 10 it is clear that if the following inequality

(3)
$$\varphi(A+B) - \varphi(|A-B|) \le 2\varphi(A^{\frac{1-s}{2}}B^sA^{\frac{1-s}{2}})$$

holds true for any $A,B\in M_n^+$, then φ is a tracial. In particular, when s=0 the following inequality characterizes the trace property

(4)
$$\varphi(B) - \varphi(A) \le \varphi(|A - B|) \quad (A, B \in M_n^+).$$

From this observation we have

Corollary 11. (Stolyarov-Tikhonov-Sherstnev:2005) Let φ be a positive linear functional on M_n and the following inequality

(5)
$$\varphi(|A+B|) \le \varphi(|A|) + \varphi(|B|)$$

holds true for any self-adjoint matrices $A, B \in M_n$. Then φ is a tracial.

Corollary 12. (Gardner:1979) Let φ be a positive linear functional on M_n and the following inequality

(6)
$$|\varphi(A)| \le \varphi(|A|)$$

holds true for any self-adjoint matrix $A \in M_n$. Then φ is a tracial.

Theorem 13. (D. T. Hoa-O-H. M. Toan 2012)

Let φ be a positive normal linear functional on a von Neumann algebra \mathcal{M} and f be a continuous function on $[0,\infty)$ such that f(0)=0 and $f((0,\infty))\subset (0,\infty)$. If the following inequality (7)

$$\varphi(A) + \varphi(B) - \varphi(|A - B|) \le 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$

holds true for any pair $A,B\in\mathcal{M}^+$, then φ is a trace, where $g(t)=\left\{ \begin{array}{ll} \frac{t}{f(t)} & (t\in(0,\infty))\\ 0 & (t=0) \end{array} \right.$.

Let \mathcal{A} be a von Neumann algebra and φ be a positive linear functional on \mathcal{A} . In the case of the inequality (7) the set $P(\mathcal{A})$ is not enough as a testing set.

Indeed, let p,q be arbitrary orthogonal projections from a von Neumann algebra \mathcal{M} . Since $q \geq p \wedge q$ it follows that $pqp \geq p(p \wedge q)p = p \wedge q$. So $pqp \geq p \wedge q$ holds for any pair of projections. From that it follows

$$\varphi(p+q-|p-q|) = 2\varphi(p\wedge q) \leq 2\varphi(pqp) = 2\varphi(f(p)^{\frac{1}{2}}g(q)f(p)^{\frac{1}{2}})$$

Corollary 14. Let φ be a positive linear functional on a C^* -algebra $\mathcal A$ and f be a continuous function on $[0,\infty)$ such that f(0)=0 and $f((0,\infty))\subset (0,\infty)$. If the following inequality (8)

$$\varphi(A) + \varphi(B) - \varphi(|A - B|) \le 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$

holds true for any pair $A,B\in\mathcal{A}^+$, then φ is a tracial functional, where $g(t)=\left\{ \begin{array}{ll} \frac{t}{f(t)} & (t\in(0,\infty))\\ 0 & (t=0) \end{array} \right.$.

Take the universal representation π of \mathcal{A} and consider enveloping von Neumann algebra $\mathcal{M}=\pi(\mathcal{A})''$. Apply the previous Theorem to the normal positive functional $\hat{\varphi}$ on \mathcal{M} such that $\hat{\varphi}(\pi(A))=\varphi(A)$ for $A\in\mathcal{A}$.

References

- [1] K. M. R.Audenaert, J. Calsamiglia, Ll. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan, F. Verstraete, The Quantum Chernoff Bound, Phys. Rev. Lett. 98 (2007) 16050.
- [2] R. Bhatia, Matrix analysis, Graduate texts in mathematics, Springer New York, 1997.
- [3] A. M. Bikchentaev, Commutation of projections and characterization of traces on von Neumann algebras, Siberian Math. J., 51 (2010) 971-977. [Translation from Sibirski \check{i} Matematichecki \check{i} Zhurnal, 51 (2010), 1228-1236]
- [4] D. Petz, Quantum information theory and quantum statistics, Theoretical and Mathematical Physics. Springer-Verlag, Berlin, 2008.
- [5] L. T. Gardner, An inequality characterizes the trace, Canad. J. Math. 31 (1979) 1322-1328.
- [6] F. Hansen, G. K. Pedersen, Jensen's inequality for operator and Löwner's theorem, Math. Ann., 258 (1982) 229-241.

- [7] F. Hansen, Some operator monotone functions, Linear Algebra Appl., 430 (2009) 795-99.
- [8] F. Hansen, G. Ji, J. Tomiyama, Gaps between classes of matrix monotone functions, Bull. London Math. Soc., 36 (2004), 53-58.
- [9] D. T. Hoa, H. Osaka AND H. M. Toan, On generalized Powers-Størmer's inequality, preprint(arxiv:1204:6665).
- [10] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols I, II, Academic Press., 1983, 1986.
- [11] K. Loewner, \ddot{U} ber monotone Matrixfunktionen, Math. Z. 38(1934), 177-216.
- [12] M. Nussbaum and A. Szkola, The Chernoff lower bound for symmetric quantum hypothesis testing, Ann. Stat. 37(2009), 1040 - 1057.
- [13] Y. Ogata, A Generalization of Powers-Størmer Inequality, Letters in Mathematical Physics, 97:3 (2011), 339-346.

- [14] V. Jaksic, Y. Ogata, C. -A. Pillet, R. Seiringer, Quantum hypothesis testing and non-equilibrium statistical mechanics, arXiv:1109.38041[math-ph], 2011
- [15] H. Osaka, S. Silvestrov, J. Tomiyama, Monotone operator functions, gaps and power moment problem, Math. Scand., 100:1(2007), 161-183.
- [16] H. Osaka and J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions, Linear Algebra Appl., 431(2009), 1825-1832.
- [17] R. T. Powers, E. Størmer, Free States of the Canonical Anticommutation Relations, Commun. math. Phys., 16(1970), 1-33.
- [18] A. I. Stolyarov, O. E. Tikhonov, A.N.Sherstnev, Characterization of normal traces on von Neumann algebras by inequalities for the modulus, Mathematical Notes, 72:3 (2002), 411-416. [Translation from Mat. Zametki., 72:3 (2002) 448-454.]