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Ancient Mathematics

Geometry (Euclid): Studying the relations between

figures or objects in the two dimensional plane (resp. the

three dimensional space). This is called plane geometry

(resp. solid geometry).

Objects: points, lines, triangles, parallelograms, etc.

Relations: congruent (∼=), similar (∼), congruent to a

part of (≤), commensurable, etc.

Algebra: How to solve equations with one unknown

or several unknowns (including Diophantus equations) of

different degrees
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Rene Descarte: Ananlytic geometry

Geometry ←→ Algebra

point in the plane ←→ pair of real numbers (x, y)

point in the space←→ triple of real numbers (x, y, z)

{
a straight line

in the plane

}
←→

{
a linear equation
of two unknowns

}

{
a straight line

in the space

}
←→

{
a system of two linear

equations of three unknowns

}

a plane in the space ←→
{

a linear equation
of three unknowns

}
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Cartesian Geometry: associate a given space with some

functions

X = Euclidean plane ←→
{

two functions
x: X→R, y: X→R

}

X =
{

Euclidean three
dimensional space

}
←→

{
three functions x: X→R

y: X→R, z: X→R

}

Study a space by means of some (canonical) functions

on the space.

Cartesian Geometry is a bridge from constant mathe-

matics to variable mathematics
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Riemann is perhaps the first person who had the idea

that our universe may not be a Euclidean space of di-

mension three. In his opinion, our daily experiences only

tell us that locally we have freedom of degree three in

our space (back and forth, left and right, up and down),

or of degree four in our space-time. So he initiated the

study of spaces that have the same number of degrees of

freedom around any point, ie, that locally look like the

Euclidean space Rn. This is the concept of a manifold.
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Definition. A topological space M is called a man-

ifold if for every point p ∈ M , there is an open neigh-

borhood Up of p such that Up is homeomorphic to Rn.

Examples

Unlike in Cartesian geometry, which has a single co-

ordinate system, on a manifold we may not be able to

choose global coordinates; we only have local coordinates.

This means there is no canonical way to choose coordi-

nate functions.
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In order to do calculus on a manifold, we need an extra

structure called a differential structure.

Differential Manifold: The coordinate functions can

be (and should be) chosen in a compatible way in the

following sense

where g ◦ f−1 is differentiable.

If f : U → Rn, and g : V → Rn are local coordinates

for U and V , then g ◦ f−1 : f (U ∩ V ) −→ g(U ∩ V )

is differentiable as a function from an open set of Rn to

another open set of Rn.
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Tangent space

Associate to each point p ∈ M an n-dimensional real

vector space TpM = Rn.

Definition. LetC∞(M) be the collection of all smooth

functions f : M → R. A tangent vector V at point

p ∈M is a derivation V : C∞(M)→ R satisfying

V (fg) = f (p)V (g) + V (f )g(p) ∀f, g ∈ C∞(M).

(Use the algebra C∞(M) to define a geometric object)

At any point t0 of a smooth curve α(t), there is a

tangent vector α′(t0) ∈ Tα(t0)M , defined by

(α′(t0))(f ) =
d

dt
f (α(t))|t0 ∀f ∈ C∞(M)
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A Riemannian manifold (M, g) is a differential mani-

fold M on which each tangent space is equipped with an

inner product g such that g varies smoothly from point

to point.

The length of the curve {α(t); a ≤ t ≤ b} is defined

to be
∫ b
a < α′(t), α′(t) >

1
2 dt.

Define a metric d on M by

d(p, q) = inf{ length(α) | α connects p and q} ∀p, q ∈M
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Scalar Curvature: LetM be an n-dimensional Rieman-

nian manifold. For p ∈M , let Br(M, p) be an open ball

with radius r and center p. Then, there is a number k(p)

satisfying the following condition:

volume(Br(M, p))

volume(Br(Rn, 0))
= 1− k(p)

6(n + 2)
r2 + o(r2) ,

where Rn is given the standard Euclidean metric. Such

k(p) is called the scalar curvature of M at p.

k(p) > 0: locally smaller than Euclidean space.

k(p) < 0: locally larger than Euclidean space.
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For dimension 2:

scalar curvature = 2 × Gauss Curvature.

• a cylinder has curvature 0

• a sphere has positive curvature

• a saddle surface has negative curvature
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Invariants: π1(X), Hn(X), Hn(X).

Numerical invariants: Euler number χ(M), Signature

signature(M).

χ(M) , dim(H0(M)⊗R)−dim(H1(M)⊗R)+dim(H2(M)⊗R)−· · ·

Traditionally: Euler number of a polyhedron is defined

to be #(vertices) − #(edges) + #(faces)

χ(S2) = 2 χ(T 2) = 0

Gauss-Bonnet Theorem. Let M be a closed oriented 2-

dimensional Riemannian manifold. Let k(p) be the Gauss

curvature of M . Then

∫
M

k(p) = 2πχ(M)
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For compact orientable surface

M 6= S2 ⇔ the universal covering space M̃ of M is contractible

⇔ Euler (M) ≤ 0

⇔ 6 ∃ metric with everywhere positive Gauss curvature

Definition. A manifold M with fundamental group

π1(M) = Γ is called a K(Γ, 1) manifold if πn(M) = 0 for

all n ≥ 2 (or equivalently, the universal covering space

M̃ (of M) is contractible).

Theorem If a 2-dimensional closed manifold M is a

K(π1(M), 1) manifold, then M can not have everywhere

positive Gauss curvature.

For higher dimensional manifolds, replace Gauss cur-

vature with scalar curvature.
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Gromov-Lawson Conjecture: Any compactK(Γ, 1)

manifoldM does not have everywhere positive scalar cur-

vature.

This conjecture is a special case of Gromov Positive

Scalar Curvature Conjecture which involves non

compact complete Riemannian manifolds (called open

manifolds).

Even to prove Gromov-Lawson Conjecture, we need

to use the universal covering M̃ (of M) which is an open

manifold.
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LetM be an orientable compact manifold of dimension

4k. Then H4k(M,R) = R.

∪ : H2k(M,R)×H2k(M,R)→ H4k(M,R) = R.

defines a quadratic form <,> on H2k(M,R).

Write < x, y >=

t∑
i=1

xiyi −
t+m∑
j=t+1

xjyj .

Define signature ofM to be the signature of the quadratic

form t−m.

Like the Euler number, the signature is a homotopy

invariant.
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There is a characteristic class called the Hirzebruch

class L(M) ∈ ⊕kt=1H
4t(M,R), such that

signature(M) =

∫
M

L(M) =< L(M), [M ] >∈ Z.

Higher signature:

Let M be an n-dimensional manifold with π1(M) = Γ.

Let BΓ be the classifying space of Γ. The identification

of π1(M) with Γ gives a classifying map u : M → BΓ.

For each x ∈ H∗(BΓ,R), one can define higher Signa-

ture

signaturex(M,u) =< L(M) ∪ u∗x, [M ] >

=

∫
M

L(M) ∪ u∗x ∈ R
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Novikov Conjecture. Higher Signature is a homo-

topy invariant for manifolds M . That is, for any dis-

crete group Γ and any x ∈ H∗(BΓ,R), for any two n-

dimensional manifolds M, N with π1(M) = Γ, π1(N) =

Γ, and classifying map u : M → BΓ, if there is a homo-

topy equivalence f : N →M , then

signaturex(M,u) = signaturex(N, u ◦ f ).

The Novikov conjecture is known to hold for many dis-

crete groups.

One of the most powerful methods to prove both Gromov-

Lawson conjecture and Novikov Conjecture is to use C∗-

algebras as non commutative spaces.
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Index theory and noncommutative geometry.

Many numerical invariants of manifolds can be written

as indices of elliptic operators.

Let Ei → M(i = 1, 2) be a smooth vector bundles

over M , and let C∞(M,Ei) be the smooth sections of

Ei. An Elliptic Operator on M is a differential operator

D : C∞(M,E1) → C∞(M,E2) with invertible lead-

ing symbol—or roughly speaking, it is invertible modulo

lower order operators.

D is elliptic =⇒ D is Fredholm

That is, ker(D) and coker(D) are finite dimensional.

Define Index(D) = dim ker(D)− dim coker(D).

(D is invertible modulo compact operators, i.e., ∃T

such that DT − I and TD − I are compact operators.)
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For example:

index(deRham operator) = χ(M)

index(Signature operator) = signature(M)

Atiyah—Singer index theory implies

Index(Dirac Operator)=Â(M)−−Â genus of M .

Theorem. (Lichnerowicz formula) For the Dirac op-

erator D on a smooth manifold M

D2 = ∇∗∇ +
1

4
k,

where k is the scalar curvature function on M .

Consequently, if compact manifoldM has positive scalar

curvature then Dirac operator D is invertible.

Corollary. (Atiyah-Singer) For a compact manifold

M , if Â(M) 6= 0, then M can not have positive scalar

curvature everywhere.
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But an elliptic operator on an open manifold is no

longer Fredholm, i.e., it is not invertible modulo compact

operators, so one can no longer define its index.

Atiyah-Brown-Douglas-Fillmore-Kasparov work out a

way to define K-homology group K∗(M) in terms of “ab-

stract elliptic operators”. In this language an elliptic

opetator D on M defines a K-cycle [D] ∈ K0(M) and

Index : [D] ∈ K0(M) −→ K0({pt}) = Z

here K0({pt}) could be regarded as K-theory K0(K(H))

of the algebra K(H) of all compact operators on an infi-

nite dimensional Hilbert space H .

The index map is the map π∗ : K0(M) → K0({pt}),

where π : M → {pt} is the quotient map identifying the

whole manifold M .
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In order for a continuous map f : X → Y to in-

duce a map f∗ : K∗(X) → K∗(Y ), one needs f to

be proper, that is, the pre-image of any compact set

needs to be compact. So if M is an open manifold,

then π∗ : K0(M) → K0({pt}) does not make sense for

π : M → {pt}, as we said elliptic operators on a non-

compact manifold may not be Fredholm.

So we need to use another kind of quotient space: we

need to identify any bounded set to a single point, but

not the whole manifold.

Example. Z ∼= R 6∼= {pt}.

Z = · · · · · · · · ·

R = −−−−−−−−−−−−−−−−−−−
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Using the ideas of Descartes and Riemann, one can

study a space X by studying the functions on X .

X a compact space−→C(X) =
{

continuous complex
valued functions

}
= commutative C∗-algebras.

M a differential manifold −→ C∞(M) ⊂ C(M)

=
{

commutative C∗-algebra
with certain dense subalgebra

}
.

We can regard general noncommutative C∗-algebras as

noncommutative topological spaces.

Noncommutative C∗-algebras with certain dense sub-

algebras (called smooth subalgebras) can be regarded as

noncommutative differential manifolds.

Let us use Connes’ noncommutative quotient to ex-

plain the idea.
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Noncommutative quotient spaces (Connes):

X = {x, y}, ∼ identifying x and y

X/ ∼= {pt}, C(X/ ∼) = C

Noncommutative quotient:

C(X) = C⊕ C −→M2(C) by

(a, b) 7−→

 a 0

0 b



x ∼ y: means p :=

 1 0

0 0

 ∼ q :=

 0 0

0 1



The partial isometry v :=

 0 0

1 0

 has initial space p and

final space q.

Put v (and v∗) in, then p(= v∗v) ∼ q(= vv∗).

M2(C)—the Noncommutative quotient space

K0(M2(C)) = K0(C) = K0(K)
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M : complete Riemannian manifold

Noncommutative quotient spaceC∗(M) (Roe algebra):

Closure of the set of all locally compact bounded linear

operators T ∈ B(L2(M)) (or B(L2(M,E)), where E is

the spinor bundle on whichD acts) with finite propagation.

Locally compact: If f ∈ C0(M), then TMf and MfT

are compact, where Mf ∈ B(L2(M,E)) is defined by

Mfg = f · g, for g ∈ L2(M,E).

Finite propagation: There is a r > 0 such that if

dist(supp(f ), supp(g)) > r, then MfTMg = 0, or

supp(Ts) ⊂ {x ∈M ; dist(x, supp(s)) ≤ r},

∀s ∈ L2(M)( or L2(M,E)).
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One can define Roe algebra for general metric space.

Then we have C∗(R) = C∗(Z).

Even though an elliptic operator D on an open mani-

fold M̃ is not invertible modulo compact operators, it is

invertible modulo C∗(M̃). One can define

Index : K∗(M̃) −→ K∗(C
∗(M̃)).

In general, one can define

Index : KX∗(Y ) −→ K∗(C
∗(Y )),

where KX∗(Y ) is coarse K-homology of space Y .

Coarse Geometric Novikov (CGN) Conjecture The above

index map is injective up to tensoring with Q.

CGN Conjecture for a group Γ (or equivalently, for the

universal cover M̃ of K(Γ, 1) manifold M)⇒ Gromov-

Lawson conjecture for K(Γ, 1) manifolds.
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Let Γ be a discrete group, and CΓ be the group algebra

of Γ with complex coefficients. One can define the C∗-

algebra C∗maxΓ to be the completion of CΓ with respect

to a certain maximum norm ‖ · ‖max.

Let EΓ be the classifying space of Γ for free actions.

One can define an index map, called Baum-Connes map:

µ : KΓ
∗ (EΓ)→ K∗(C

∗
maxΓ).

Strong Novikov conjecture: µ is rationally injective.

Strong Novikov Conjecture for Γ⇒ Both Novikov con-

jecture for manifolds with π1 to be Γ and Gromov-Lawson

Conjecture for K(Γ, 1) manifolds.
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Let Γ be a residually finite group with

Γ ⊇ Γ1 ⊇ Γ2 ⊇ · · ·

with Γ/Γi finite and ∩∞i=1Γi = {1}, where Γi are normal

subgroups.

Define the box space X(Γ) = ∪∞i=1Γ/Γi with

lim
n+m→∞
n 6=m

d(Γ/Γn,Γ/Γm) =∞.

Theorem (G-Wang-Yu) If EΓ/Γ has the homotopy

type of a finite CW complex, then the strong Novikov

conjecture for Γ and all Γn, with n = 1, 2 · · · ⇐⇒ Coarse

geometric Novikov conjecture for X(Γ).

This gives a geometrization of the strong Novikov con-

jecture for these groups.
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Yu proved the coarse geometric Novikov conjecture for

spaces that can be uniformly embedded into a Hilbert

Space

Dranishnikov-G-Lafforgue-Yu constructed a discrete met-

ric space which can not be uniformly embedded into a

Hilbert space, answering an open question of Gromov

negatively.

Gromov proved that any discrete metric space con-

taining a sequence of expanders can not be uniformly

embedded into Hilbert space.
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Kasparov-Yu proved the coarse geometric Novikov con-

jecture for spaces that can be uniformly embedded into

a uniformly convex Banach space.

Lafforgue constructed residually finite groups Γ with

property T , such that the box spaces X(Γ) can not be

uniformly embedded into uniformly convex Banach spaces.

Each of the spacesX(Γ) contains a sequence of expanders.

Corollary. (G-Wang-Yu) For Lafforgue’s examples

X(Γ), the coarse geometric Novikov conjecture holds.

This is the first result to show that certain spaces con-

taining sequences of expanders satisfy the coarse geomet-

ric Novikov conjecture.
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