Noncommutative Geometry and Kadison-Singer Algebras

joint work with Wei Yuan

Chinese Academy of Sciences

June 21, 2011(ECNU, Shanghai)

What is Noncommutative Geometry?

Geometrical:

Classification of group actions on a manifold M/G, e.g., \mathbb{Z} acts on S^1 by rotations: $n: e^{2\pi i t} \to e^{2\pi i (t+n\theta)}$; to classify $S^1/\theta\mathbb{Z}$.

What is Noncommutative Geometry?

Geometrical:

Classification of group actions on a manifold M/G, e.g., \mathbb{Z} acts on S^1 by rotations: $n: e^{2\pi i t} \to e^{2\pi i (t+n\theta)}$; to classify $S^1/\theta\mathbb{Z}$.

Algebraic:

Geometrical and topological invariants of the algebra $C(M) \times G$, $C^{\infty}(M) \times G$ or $L^{\infty}(M) \times G$, e.g., dimension, K-theory, (co)homology groups, etc.

$$S^1 = \mathbb{R}/\mathbb{Z}$$
 and $\mathbb{R} = \tilde{S^1}$

$$\mathbb{Z}=\hat{S^1}$$

$$S^1=\hat{\mathbb{Z}}$$

$$S^1=\mathbb{R}/\mathbb{Z}$$
 and $\mathbb{R}=\tilde{S}^1$
$$\mathbb{Z}=\hat{S}^1 \longrightarrow \mathbb{C}[\mathbb{Z}]$$

$$\updownarrow$$

$$S^1=\hat{\mathbb{Z}} \longrightarrow \mathscr{P}(S^1)$$
 alg. geo.

$$\begin{split} S^1 &= \mathbb{R}/\mathbb{Z} \text{ and } \mathbb{R} = \tilde{S^1} \\ &\mathbb{Z} = \hat{S^1} &\to \mathbb{C}[\mathbb{Z}] &\to C^*(\mathbb{Z}) \\ &\updownarrow &\updownarrow &\updownarrow \\ S^1 &= \hat{\mathbb{Z}} &\to \mathcal{P}(S^1) &\to C(S^1) \\ &\text{alg. geo.} &C^*\text{-alg} \end{split}$$

$$S^1 = \mathbb{R}/\mathbb{Z} \text{ and } \mathbb{R} = \tilde{S}^1$$

$$\mathbb{Z} = \hat{S}^1 \longrightarrow \mathbb{C}[\mathbb{Z}] \longrightarrow C^*(\mathbb{Z}) \longrightarrow \mathcal{L}_{\mathbb{Z}} \longrightarrow l^2(\mathbb{Z})$$

$$\updownarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Basic facts:

$$S^1=$$
 maximal ideal space of $C(S^1);$ $C(S^1)=< U=e^{2\pi it}: U^*U=1>;$ $C(S^1\times S^1)=< U,$ $V:$ $U^*U=$ $V^*V=1,$ $UV=$ $VU>$

Definition

Suppose G is a group (discrete or not) and π a unitary representation of G on a Hilbert space \mathfrak{H} (e.g., $I^2(\mathbb{Z})$). Then $\operatorname{span}\{\pi(G)\}^-$ is called a C^* -algebra; the commutant of $\pi(G)$ (or linear span of all intertwiners) is called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If $\mathfrak A$ is an abelian C*-algebra, then $\mathfrak A\cong C(\hat{\mathfrak A})$ where $\hat{\mathfrak A}$ is the maximal ideal space.

Definition

Suppose G is a group (discrete or not) and π a unitary representation of G on a Hilbert space \mathfrak{H} (e.g., $I^2(\mathbb{Z})$). Then $\operatorname{span}\{\pi(G)\}^-$ is called a C^* -algebra; the commutant of $\pi(G)$ (or linear span of all intertwiners) is called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If $\mathfrak A$ is an abelian C*-algebra, then $\mathfrak A\cong C(\hat{\mathfrak A})$ where $\hat{\mathfrak A}$ is the maximal ideal space.

Theorem (von Neumann, 1929)

If $\mathfrak A$ is an abelian von Neumann algebra, then $\mathfrak A \cong L^\infty([0,1],\mu)$.

noncommutative operator algebras=noncommutative topology or probability theory

Examples

NC points

Noncommutative torus $S^1 \times_{\theta} S^1 (= S^1 \times_{\theta} \mathbb{Z})$

Algebra: $\mathfrak{A} = C^* \left\langle U, V : V^{-1}UV = e^{2\pi i \theta} U \right\rangle$ $\theta \text{ is rational} \qquad \mathfrak{A} \stackrel{\sim}{=} M_n(C(S^1 \times S^1)), \ K_0(\mathfrak{A}) = \mathbb{Z}$ $\theta \text{ is irrational} \qquad K_0(\mathfrak{A}) = \mathbb{Z} + \theta \mathbb{Z} \text{ (not connected)},$ $K_1(\mathfrak{A}) = \mathbb{Z} + \mathbb{Z}$

$\mathbb{A}_{\mathbb{Q}}/C_{\mathbb{Q}}$

Adele ring :
$$\mathbb{A}_{\mathbb{Q}} = \prod_{p \in \mathcal{P}} \mathbb{Q}_p$$
 dx : Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}} = \mathbb{A}_{\mathbb{Q}}^*/\mathbb{Q}^*$ d^*x : Haar measure on $C_{\mathbb{Q}}$

$$dx = \lim_{\epsilon \to 0} \epsilon |x|^{1+\epsilon} d^*x$$

$\mathbb{A}_{\mathbb{Q}}/C_{\mathbb{Q}}$

Adele ring :
$$\mathbb{A}_{\mathbb{Q}} = \prod_{p \in \mathscr{P}} \mathbb{Q}_p$$
 dx : Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}} = \mathbb{A}_{\mathbb{Q}}^*/\mathbb{Q}^*$ d^*x : Haar measure on $C_{\mathbb{Q}}$

$$dx = \lim_{\epsilon \to 0} \epsilon |x|^{1+\epsilon} d^*x$$

For $h \in \mathcal{S}(C_{\mathbb{Q}})$ and $f \in \mathcal{S}(\mathbb{A})$, define

$$(U(h)f)(x) = \int_{C_{\mathbb{Q}}} f(g^{-1}x)h(g)d^*g.$$

Let
$$R_{\lambda} = \hat{\chi}_{[-\lambda,\lambda]} \chi_{[-\lambda,\lambda]}$$
.

$\mathbb{A}_{\mathbb{Q}}/C_{\mathbb{Q}}$

Adele ring : $\mathbb{A}_{\mathbb{Q}} = \prod_{p \in \mathcal{P}} \mathbb{Q}_p$ dx: Haar measure on $\mathbb{A}_{\mathbb{Q}}$ Idele class group: $C_{\mathbb{Q}} = \mathbb{A}_{\mathbb{Q}}^*/\mathbb{Q}^*$ d^*x : Haar measure on $C_{\mathbb{Q}}$

$$dx = \lim_{\epsilon \to 0} \epsilon |x|^{1+\epsilon} d^*x$$

For $h \in \mathcal{S}(C_{\mathbb{Q}})$ and $f \in \mathcal{S}(\mathbb{A})$, define

$$(U(h)f)(x) = \int_{C_{\mathbb{Q}}} f(g^{-1}x)h(g)d^*g.$$

Let
$$R_{\lambda} = \hat{\chi}_{[-\lambda,\lambda]} \chi_{[-\lambda,\lambda]}$$
.

Conjecture

$$Trace(R_{\lambda}U(h)) = 2h(1)\log'\lambda + \sum_{p\in\mathscr{P}}\int_{Q_{p}}\frac{h(g^{-1})}{|1-g|_{p}}d^{*}g + o(1).$$

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

$$\mathbb{C}\langle x_1,\ldots,x_n\rangle$$
, x_1,\ldots,x_n are non commuting variables; or $\mathbb{C}[F_n]$

C* (or topological) level von Neumann(measure space) level

$$C^*(F_n)$$

$$K_0(C^*(F_n)) = \mathbb{Z}$$

$$K_1(C^*(F_n)) = \mathbb{Z}^n$$

$$\mathcal{L}_{F_n}$$
 $K_0(\mathcal{L}_{F_n}) = \mathbb{R} \quad (n > 1)$
 $K_1(\mathcal{L}_{F_n}) = \{0\}$

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

$$\mathbb{C}\langle x_1,\ldots,x_n\rangle$$
, x_1,\ldots,x_n are non commuting variables; or $\mathbb{C}[F_n]$

C* (or topological) level von Neumann(measure space) level

$$C^*(F_n)$$
 \mathcal{L}_{F_n} $K_0(C^*(F_n)) = \mathbb{Z}$ $K_1(C^*(F_n)) = \mathbb{Z}^n$ $K_1(\mathcal{L}_{F_n}) = \{0\}$

Classification

Is "n" an invariant of the algebra? Can \mathcal{L}_{F_n} be generated by fewer than n elements?

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra (in terms of a measurement)? i.e., Suppose $\mathfrak A$ is an algebra with a linear functional ρ (or a trace). Suppose $\mathfrak A$ is generated by X_1,\ldots,X_d . For any $\epsilon>0$ and N>0, is there a large matrix algebra $M_k(\mathbb C)$ with functional ρ , A_1,\ldots,A_d in $M_k(\mathbb C)$ such that

$$|\rho(X_{i_1}\cdots X_{i_s})-\rho(A_{i_1}\cdots A_{i_s})|<\epsilon,\quad \forall s\leq N?$$

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra (in terms of a measurement)? i.e., Suppose $\mathfrak A$ is an algebra with a linear functional ρ (or a trace). Suppose $\mathfrak A$ is generated by X_1,\ldots,X_d . For any $\epsilon>0$ and N>0, is there a large matrix algebra $M_k(\mathbb C)$ with functional ρ , A_1,\ldots,A_d in $M_k(\mathbb C)$ such that

$$|\rho(X_{i_1}\cdots X_{i_s})-\rho(A_{i_1}\cdots A_{i_s})|<\epsilon,\quad \forall s\leq N?$$

Connes's Embedding: ρ is a trace, $\mathfrak A$ is a (separable) factor of type II₁.

Some Known Results

1) Jones Index:

 $H \leq G$ a subgroup:

$$H \leq G$$

$$[G:H]\in\mathbb{N}\cup\{\infty\}$$

vN(G) the commutant of the left regular representation of G, $\mathfrak{M} \subset vN(G)$ is a von Neumann subalgebra (weakly closed subalgebra):

$$\mathfrak{M} \subset vN(G)$$

$$[vN(G):\mathfrak{M}] \in \{4\cos^2\frac{\pi}{n}: n\in\mathbb{N}\}\cup[4,\infty]$$

2) Voiculescu's free dimension:

With (\mathfrak{A}, ρ) given, $X_1, \ldots, X_d \in \mathfrak{A}$, define

$$\Gamma(X_1,\ldots,X_d;\epsilon,k,N)=\{(A_1,\ldots,A_d)\}\subset M_k(\mathbb{C})^d\cong \mathbb{R}^{4dk^2}.$$

$$fdim(X_1,\ldots,X_d) = \liminf_{\epsilon,k,N} \frac{1}{k^2} \log \frac{vol(\Gamma(X_1,\ldots,X_d;\epsilon,k,N))}{vol(ball(\rho(l)))} + d.$$

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,

$$fdim(X_1,\ldots,X_d) = fdim(Y_1,\ldots,Y_c)$$

if two sets generate the same algebra.

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,

$$fdim(X_1, \ldots, X_d) = fdim(Y_1, \ldots, Y_c)$$

if two sets generate the same algebra.

Theorem 2

```
fdim(M_n(\mathbb{C})) = 1 - \frac{1}{n^2};

fdim(SL_2(\mathbb{Z})) = \frac{7}{6};

fdim(F_n) = n;

fdim(\mathcal{L}_{G \times H}) = 1, \text{ or } -\infty, \text{ when } G \text{ and } H \text{ are infinite;}

(\mathcal{L}_{F_n} \text{ are prime factors})

fdim(\mathcal{L}_{SL_n(\mathbb{Z})}) = 1, n \geq 3. \text{ (Shen-Ge)}
```

Other viewpoints

All above is "real" noncommutative geometry.

What is a complex noncommutative geometry?

• When we replace \mathbb{Z} by \mathbb{N} , the above $l^2(\mathbb{Z}) \cong L^2(S^1)$ becomes $l^2(\mathbb{N}) \cong H^2(\mathbb{D})$, the Hardy space.

- When we replace \mathbb{Z} by \mathbb{N} , the above $I^2(\mathbb{Z}) \cong L^2(S^1)$ becomes $I^2(\mathbb{N}) \cong H^2(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathcal{G} is an ideal in $\mathbb{C}[x_1,\ldots,x_n]$, $Var(\mathcal{G})=\{x:p(x)=0,\forall p\in\mathcal{G}\}$. One can replace $\mathbb{C}[x_1,\ldots,x_n]$ by any noncommutative ring.

- When we replace \mathbb{Z} by \mathbb{N} , the above $I^2(\mathbb{Z}) \cong L^2(S^1)$ becomes $I^2(\mathbb{N}) \cong H^2(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathcal{G} is an ideal in $\mathbb{C}[x_1,\ldots,x_n]$, $Var(\mathcal{G}) = \{x : p(x) = 0, \forall p \in \mathcal{G}\}$. One can replace $\mathbb{C}[x_1,\ldots,x_n]$ by any noncommutative ring.
- The need to study \mathbb{R}/\mathbb{N}^* . For $f \in \mathcal{S}(0, \infty)$,

$$\zeta(s) = \frac{\int_0^\infty \sum_n f(nx) x^{s-1} dx}{\int_0^\infty f(x) x^{s-1} dx}.$$

- When we replace \mathbb{Z} by \mathbb{N} , the above $I^2(\mathbb{Z}) \cong L^2(S^1)$ becomes $I^2(\mathbb{N}) \cong H^2(\mathbb{D})$, the Hardy space.
- Algebraic geometry: \mathcal{G} is an ideal in $\mathbb{C}[x_1,\ldots,x_n]$, $Var(\mathcal{G}) = \{x : p(x) = 0, \forall p \in \mathcal{G}\}$. One can replace $\mathbb{C}[x_1,\ldots,x_n]$ by any noncommutative ring.
- The need to study \mathbb{R}/\mathbb{N}^* . For $f \in \mathcal{S}(0, \infty)$,

$$\zeta(s) = \frac{\int_0^\infty \sum_n f(nx) x^{s-1} dx}{\int_0^\infty f(x) x^{s-1} dx}.$$

• Kadison and Singer (1960): \mathcal{T} is a triangular algebra if $\mathcal{T} \cap \mathcal{T}^*$ (the diagonal of \mathcal{T}) is abelian—a generalization of $\mathcal{H}^{\infty}(\mathbb{D})$.

Natural generalization: $\mathfrak{A}(X_1,\ldots,X_d)$, \mathfrak{A} a noncommutative coefficient ring; \mathcal{G} a "base" space given by \mathfrak{A} ; $\phi_i \in \mathfrak{A}(X_1,\ldots,X_d)$ are noncommutative polynomials. Define

$$Var(\{\phi_i\}_i) = \{(P_1, \dots, P_d) \in \mathcal{G}^d : \phi_i(P_1, \dots, P_d) = 0\}.$$

Von Neumann's (continuous) geometry:

Points: projections in $\mathfrak{B}(\mathfrak{R})$.

Manifold: all projections in a von Neumann algebra.

Suppose $\mathfrak A$ is a *-subalgebra of $\mathfrak B(\mathfrak H)$. Then

$$Lat(\mathfrak{A}) = \{ P \in \mathfrak{B}(\mathfrak{H}) : (I - P)AP = 0, A \in \mathfrak{A} \}$$

is called a (von Neumann) manifold.

In commutative geometry, (1 - x)x = 0 when $x^2 = 0$. Thus (I - P)AP are zero polynomials.

In von Neumann's continuous geometry, a von Neumann algebra $\mathfrak A$ is a coefficient ring, $\mathcal G=\{\text{all projections in }\mathfrak A\}$ (Grassmann manifold) is the base (point) space for $\mathfrak A$.

Von Neumann's "manifolds" are lattices of projections in a von Neumann algebra.

—they are "extremely" disconnected since both P and I-P are in a manifold.

Generalizing this idea, one may consider any $\mathfrak{A} \subset M_n(\mathbb{C})$, $\mathcal{G} = \mathcal{G}(\mathfrak{A})$ (ϕ_i are all degree zero polynomials) and define

$$Lat(\mathfrak{A}) = \{ P \in \mathcal{G} \mid A : P \to P, \forall A \in \mathfrak{A} \}$$
$$= \{ P \mid (1 - P)AP = 0, \forall A \in \mathfrak{A} \}.$$

Lat(\mathfrak{A}) is always a lattice: $P \wedge Q$, $P \vee Q \in \text{Lat}(\mathfrak{A})$, $\forall P$, $Q \in \text{Lat}(\mathfrak{A})$.

Generalizing this idea, one may consider any $\mathfrak{A} \subset M_n(\mathbb{C})$, $\mathcal{G} = \mathcal{G}(\mathfrak{A})$ (ϕ_i are all degree zero polynomials) and define

$$Lat(\mathfrak{A}) = \{ P \in \mathcal{G} \mid A : P \to P, \forall A \in \mathfrak{A} \}$$
$$= \{ P \mid (1 - P)AP = 0, \forall A \in \mathfrak{A} \}.$$

Lat(\mathfrak{A}) is always a lattice: $P \wedge Q$, $P \vee Q \in \text{Lat}(\mathfrak{A})$, $\forall P$, $Q \in \text{Lat}(\mathfrak{A})$.

If $\mathcal{V} \subset \mathcal{G}$ is a sublattice or any subset, then we define

$$Alg(\mathcal{V}) = \{ A \in \mathfrak{A} \mid A : P \to P, \forall P \in \mathcal{V} \}$$
$$= \{ A \mid (1 - P)AP = 0, \forall P \in \mathcal{V} \}.$$

 $Alg(\mathcal{V})$ is always an algebra.

Definition

Suppose $\mathfrak{A} = \mathfrak{B}(\mathfrak{H}) = M_{\infty}(\mathbb{C})$ and \mathcal{P} a set of projections in $\mathfrak{B}(\mathfrak{H})$. We call $Alg(\mathcal{P})$ a Kadison-Singer algebra and $LatAlg(\mathcal{P})$ a Kadison-Singer lattice (or KS-manifold) if $LatAlg(\mathcal{P})$ is a "minimal" generating reflexive lattice for the von Neumann algebra generated by \mathcal{P} .

In this case, we denote $\mathrm{Alg}(\mathcal{P})$ by $\mathrm{Naf}(\mathcal{P})$ and $\mathrm{Lat}(\cdot)$ by $\mathrm{Var}(\cdot)$. Then $\mathrm{Alg}(\mathcal{P})$ is a maximal reflexive algebra with respect to its diagonal subalgebra.

Conjecture: If $P \in Var(\mathfrak{A})$ and $P \neq 0$, I, then $I - P \notin Var(\mathfrak{A})$.

If there is a minimal KS-manifold containing $\mathcal{P}\subset\mathcal{G}$, then we call $\mathrm{Var}(\mathcal{P})$ the "Zariski closure" of \mathcal{P} .

• If $\mathcal{P} = \{P\}$, then $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$.

- If $\mathcal{P} = \{P\}$, then $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$.
- If $\mathcal{P}=\{P,Q\}$ is a lattice in \mathfrak{A} , then $VarNaf(\mathcal{P})=\mathcal{P}\cup\{0,I\}$. (P. Halmos, 1972).

- If $\mathcal{P} = \{P\}$, then $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$.
- If $\mathcal{P}=\{P,Q\}$ is a lattice in \mathfrak{A} , then $VarNaf(\mathcal{P})=\mathcal{P}\cup\{0,I\}$. (P. Halmos, 1972).
- If $\mathcal{P} = \{P, Q, R\}$ is a lattice in \mathfrak{A} , then is $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$?—Answer: no! This is the simplest non trivial case. The lattice is called a double triangle lattice:

- If $\mathcal{P} = \{P\}$, then $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$.
- If $\mathcal{P}=\{P,Q\}$ is a lattice in \mathfrak{A} , then $VarNaf(\mathcal{P})=\mathcal{P}\cup\{0,I\}$. (P. Halmos, 1972).
- If $\mathcal{P} = \{P, Q, R\}$ is a lattice in \mathfrak{A} , then is $VarNaf(\mathcal{P}) = \mathcal{P} \cup \{0, I\}$?—Answer: no! This is the simplest non trivial case. The lattice is called a double triangle lattice:

• If $\mathcal{P} = \{P_1, \dots, P_n\}$, then what is $VarNaf(\mathcal{P})$?

The closure of three points

1) Finite-dimensional case

Let $\mathcal{G}(r,n)$ be the Grassmann manifold consisting all r-dimensional subspaces of \mathbb{C}^n , which can be identified with all rank r projections in $M_n(\mathbb{C})$.

Suppose P, Q, R are three elements in $\mathcal{G} = \bigcup_r \mathcal{G}(r, n)$ such that they generate a double triangle lattice (as above).

Theorem (Yuan-Ge)

The KS-manifold generated by a double triangle lattice is homeomorphic to S^2 . Zariski closure of any three points in S^2 is S^2 .

When n is even, randomly picked three projections in $M_n(\mathbb{C})$ form a double triangle lattice with probability one.

2) The limit case as $n \to \infty$

As $n \to \infty$, P, Q, R converges in distribution, i.e.,

$$\int_{\mathcal{G}^3} \frac{1}{n} \operatorname{trace}(\phi(P, Q, R)) dP dQ dR$$

has a limit for any polynomial ϕ .

Because P, Q, R are non commuting variables, they can be modeled by the following elements:

 $G_3 = \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$: the free product of \mathbb{Z}_2 with itself 3 times (or *n* times, in general).

Let \mathcal{L}_{G_3} be the group von Neumann algebra acting on $l^2(G_3)$.

If U_1 , U_2 , U_3 are canonical generators for G_3 (or \mathcal{L}_{G_3}), then $P_j = \frac{1 - U_j}{2}$, j = 1, 2, 3, are projections.

 \mathcal{F}_3 : the lattice consisting of P_1 , P_2 , P_3 and 0, 1.

Theorem (Yuan-Ge)

 $Var(Naf(\mathcal{F}_3)) \setminus \{0,1\}$ is homeomorphic to S^2 . Zariski closure of any three elements in S^2 generate S^2 .

Theorem (Yuan)

The automorphism group of \mathcal{L}_{G_3} that preserve S^2 is isomorphic to S_3 .

Theorem (Hou-Yuan)

The KS-manifold generated by a double triangle lattice in any von Neumann algebra with a trace is homeomorphic to S^2 . The only connected KS-manifold in $M_n(\mathbb{C})$ is homeomorphic to S^2 . (to appear in Math. Ann.)

- Questions: 1. How does the geometry of S^2 determine \mathfrak{A} ? (S^2 "minimally" generates the coefficient ring \mathfrak{A} .)
- 2. What is $VarNaf(\mathcal{F}_4)$? Is it finite-dimensional?
- 3. Are there (nontrivial) abelian KS-algebras?

Product KS-manifolds

Suppose \mathcal{P} , \mathbb{Q} are KS-manifolds. There is a natural way to associate $\mathcal{P} \times \mathbb{Q}$ with KS-algebra Naf(\mathcal{P}) * Naf(\mathbb{Q})—the free product. IT SHOULD BE RIGHT But even with the simplest case $\mathcal{P} = \mathbb{Q} = \{0, P, 1\}$, we do not have a proof.

Thanks!