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What is Noncommutative Geometry ?

Geometrical:

Classification of group actions on a manifold M/G,
e.g., Z acts on S! by rotations: n: e2™t — e27ilt+n0). 1o classify S1/0Z.



What is Noncommutative Geometry ?

Geometrical:

Classification of group actions on a manifold M/G,

e.g., Z acts on S! by rotations: n: e2™t — e27ilt+n0). 1o classify S1/0Z.

Algebraic:

Geometrical and topological invariants of the algebra C(M) x G,
C®(M) x G or L>®°(M) x G,
e.g., dimension, K-theory, (co)homology groups, etc.
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What is NG?

Classical geometry:
S!=R/Z and R = S!

Z =St - CZ] - CHZ) - £z — 2(Z)

A g g g
sl=7 - P(SY) = C(SY) — L[=(SY) — [%(Sh)
geometry alg. geo. C*-alg vN alg analysis

Basic facts:
S' = maximal ideal space of C(S1); C(S1) =< U = ™ : U*U =1 >;
CISTx SN =< U, V:U*U = V*V =1, UV = VU >



What is NG?

Definition

Suppose G is a group (discrete or not) and st a unitary representation

of G on a Hilbert space ¥C (e.g., /?(Z)). Then span{m(G)}~ is called a

*algebra; the commutant of 7r(G) (or linear span of all intertwiners) is
called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If 2 is an abelian C*-algebra, then 2 = C(2() where 2 is the maximal ideal
space.
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What is NG?

Definition

Suppose G is a group (discrete or not) and st a unitary representation

of G on a Hilbert space ¥C (e.g., /?(Z)). Then span{m(G)}~ is called a

*algebra; the commutant of 7r(G) (or linear span of all intertwiners) is
called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)

If 2 is an abelian C*-algebra, then 2 = C(2() where 2 is the maximal ideal
space.

Theorem (von Neumann, 1929)

If 2 is an abelian von Neumann algebra, then 20 = L*°([0, 1], p).

noncommutative operator algebras=noncommutative topology or
probability theory
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Examples
Classical one point: o — C
Classical n points: Q9 - o «— Co®---9C

n points

NC one point {00 """ 0}/ =@ M, (C)
NC one point
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NC points

&

selfmap
9
(o \

(%) K
\-)O' s M,(C(SY)

Ko(Ma(C(SY)) = Z,  Ki(M,(C(SY)) =

~>°



Noncommutative torus S! x4 S'(= S x4 Z)

Algebra:
A=C* <U, V:viuv = e2”i9U>

0 is rational A = M,(C(S! x S1)), Ko(2A) = Z
6 is irrational Ky(2A) = Z + 6Z (not connected),
KiQ) =7+ Z
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Ag/Cy

Adele ring : Ag = [],c Qp dx: Haar measure on Ag
Idele class group: Cp = Aj/Q*  d*x: Haar measure on Cg

dx = lime_q €|x|}*¢d*x
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Ag/Cy

Adele ring : Ag = [],c Qp dx: Haar measure on Ag
Idele class group: Cp = Aj/Q*  d*x: Haar measure on Cg
dx = lime_q €|x|}*¢d*x
For h € §(Cp) and f € S(A), define

(Uh)f)(x) = [c, flg x)hlg)d*.

Let Ry = X—s0X[-1A)-
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Ag/Cy

Adele ring : Ag = [],c Qp dx: Haar measure on Ag
Idele class group: Cp = Aj/Q*  d*x: Haar measure on Cg

dx = lime_ €|x|1Ted*x
For h € §(Cp) and f € S(A), define
(Uh)f)(x) = [c, flg x)hlg)d*.

Let Ry = X-2xX-2.)-

Trace(R,U(h)) = 2h(1)log' A + ¥ peer [, %d*g + o(1).
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Central Questions

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

C(x1,..+»Xn)s X1,..., X, are non commuting variables; or C[F]

C* (or topological) level von Neumann(measure space) level

C*(Fp) LF,
Ko(C*(Fp)) = Z Ko(LF,) =R (n>1)
Ki(C*(Fp)) = 27 Ki(£F,) = {0}
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Central Questions

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces

C(x1,..+»Xn)s X1,..., X, are non commuting variables; or C[F]

C* (or topological) level von Neumann(measure space) level

C*(Fp) LF,
Ko(C*(Fp)) = Z Ko(LF,) =R (n>1)
Ki(C*(Fp)) = 27 Ki(£F,) = {0}

Classification

“« _n

Is “n” an invariant of the algebra? Can Xr, be generated by fewer than n
elements?
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Central Questions

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra
(in terms of a measurement)? i.e., Suppose 2 is an algebra with a linear
functional p (or a trace). Suppose 2 is generated by Xi,..., Xy. For any
€ >0and N > 0, is there a large matrix algebra M (C) with functional p,
A1, ..., Aq in Mi(C) such that

Ip(Xiy -+ Xi,) = p(Ajy -+ Ai)| < €, Vs < N?
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Central Questions

Approximate embedding problem

Can any algebra be approximated by finite dimensional matrix algebra
(in terms of a measurement)? i.e., Suppose 2 is an algebra with a linear
functional p (or a trace). Suppose 2 is generated by Xi,..., Xy. For any
€ >0and N > 0, is there a large matrix algebra M (C) with functional p,
A1, ..., Aq in Mi(C) such that

Ip(Xiy -+ Xi,) = p(Ajy -+ Ai)| < €, Vs < N?

Connes’s Embedding: p is a trace, 2 is a (separable) factor of type II;.
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Some Known Results

1) Jones Index:
H < G a subgroup:

H<G [G:H]eNU {oo}

vN(G) the commutant of the left regular representation of G, 9t C vN(G)
is a von Neumann subalgebra (weakly closed subalgebra):

M C vN(G) [VN(G): 9] € {4cos? Z:n e N} U[4, 0]
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Some Known Results

2) Voiculescu’s free dimension:
With (21, p) given, Xi,..., Xy € 2, define

T(X1,...,Xg;: 6, k, N) = {(A1, ..., Aq)} C Mi(C)? = R4,

vol(T'(X1,..., X4;€, k, N)

vol (ball{p(1}) +d.

1
fdim(Xy,..., Xq) = IierT}(Flr\mlfp log
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Some Known Results

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,
fdim(Xy,..., Xy) = fdim(Yy,..., Ye)

if two sets generate the same algebra.
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Some Known Results

Theorem 1 (Voiculescu)

fdim is an algebraic invariant, i.e.,
fdim(Xy,..., Xy) = fdim(Yy,..., Ye)

if two sets generate the same algebra.

Theorem 2

fdim(Ma(C)) = 1 - 5;

fdim(SL,(Z)) = %;

fdim(F,) = n;

fdim(£cxH) = 1, or —oo, when G and H are infinite;

(LF, are prime factors)
tdim(Ls;,z) = 1, n > 3. (Shen-Ge)
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Other viewpoints

All above is "real” noncommutative
geometry.

What is a complex noncommutative
geometry?



Other viewpoints

Motivations

e When we replace Z by N, the above /?(Z) = L%(S') becomes
I>(N) = H?(D), the Hardy space.
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@ Algebraic geometry: 9 is an ideal in C|[x, ..., x4,
Var(9) = {x: p(x) = 0,Vp € T}. One can replace C[xy, ..., x,] by
any noncommutative ring.
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Motivations

@ When we replace Z by N, the above /2(Z) = [?(S') becomes
I>(N) = H?(D), the Hardy space.

@ Algebraic geometry: 9 is an ideal in C|[x, ..., x4,
Var(9) = {x: p(x) = 0,Vp € T}. One can replace C[xy, ..., x,] by
any noncommutative ring.

@ The need to study R/N*. For f € (0, 00),

o X, flnx)xetdx
C(S) = Ofooo f(X)XS_ldX

e Kadison and Singer (1960): I is a triangular algebra if T N J* (the
diagonal of ) is abelian—a generalization of H>(ID).
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Noncommutative points

Natural generalization: 20(Xy, ..., Xg), 2 a noncommutative coefficient
ring; G a “base” space given by 2; ¢; € A(Xy,..., Xy) are
noncommutative polynomials. Define

Var({¢; }i) = {(P1,...,Pg) € G : ¢i(P1,..., Pg) = O}

Von Neumann’s (continuous) geometry:
Points: projections in 93(%().
Manifold: all projections in a von Neumann algebra.
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Noncommutative points

Suppose 2 is a *-subalgebra of $B(¥(). Then
Lat(A) = {P € B(F(): (| — P)AP =0,A e A}

is called a (von Neumann) manifold.

In commutative geometry, (1 — x)x = 0 when x> = 0. Thus (/ — P)AP are
zero polynomials.

In von Neumann'’s continuous geometry, a von Neumann algebra 2l is a
coefficient ring, G = {all projections in 2} (Grassmann manifold) is the
base (point) space for 2L.

Von Neumann’s “manifolds” are lattices of projections in a von Neumann

algebra.

—they are “extremely” disconnected since both P and / — P are in
a manifold.

31745



Noncommutative points

Generalizing this idea, one may consider any 2 c M,(C), G = G() (¢;
are all degree zero polynomials) and define

Lat(A) ={P G| A: P - P,YAe A}
—{P|(1—=P)AP = 0,VA € 2L

Lat(2() is always a lattice: PA Q, PV Q € Lat(2(), VP, Q € Lat().
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Noncommutative points

Generalizing this idea, one may consider any 2 c M,(C), G = G() (¢;
are all degree zero polynomials) and define

Lat() ={P € G | A: P — P,YA € U}
—{P|(1-P)AP = 0,YA € 2}.

Lat(2() is always a lattice: PA Q, PV Q € Lat(2(), VP, Q € Lat().
If 9 c G is a sublattice or any subset, then we define

Alg(¥) ={AcA|A:P > P,YPec D]}
—{A|(1-P)AP =0,YP c 9}.

Alg(94)) is always an algebra.



Noncommutative points

Suppose A = B(F() = M (C) and & a set of projections in 9B3(FC). We call
Alg(%°) a Kadison-Singer algebra and LatAlg(¢%°) a Kadison-Singer lattice (or
KS-manifold) if LatAlg(%P) is a “minimal” generating reflexive lattice for the
von Neumann algebra generated by ¢.

In this case, we denote Alg(%?) by Naf(%°) and Lat(-) by Var(-). Then
Alg(%P) is a maximal reflexive algebra with respect to its diagonal
subalgebra.

Conjecture: If P € Var() and P + 0, /, then /| — P ¢ Var(2().

If there is a minimal KS-manifold containing & C G, then we call
Var(%) the “Zariski closure” of &.
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Noncommutative points

Examples: 2l = M,(C).
o If P = {P}, then VarNaf(%P) = P U {0,/}.
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Noncommutative points

Examples: 2l = M,(C).

o If ¥ = {P}, then VarNaf(®) = U {0,/ }.

o If ¥ = {P,Q} is a lattice in 2 , then VarNaf(%*) = ¥ U {0,/}. (P.
Halmos, 1972).
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Noncommutative points

Examples: 2l = M,(C).
o If ¥ = {P}, then VarNaf(®) = U {0,/ }.
o If ¥ = {P,Q} is a lattice in 2 , then VarNaf(%*) = ¥ U {0,/}. (P.
Halmos, 1972).
o If # = {P,Q,R} is a lattice in 2, then is
VarNaf(%) = ® U {0, | }>—Answer: no!
This is the simplest non trivial case. The lattice is called a double
triangle lattice:
/ N
P R
AN /

O — L —
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Noncommutative points

Examples: 2l = M,(C).

o If ¥ = {P}, then VarNaf(%) = ¥ U {0, /}.

o If ¥ = {P,Q} is a lattice in 2 , then VarNaf(%*) = ¥ U {0,/}. (P.
Halmos, 1972).

o If # = {P,Q,R} is a lattice in 2, then is
VarNaf(%) = ® U {0, | }>—Answer: no!
This is the simplest non trivial case. The lattice is called a double
triangle lattice:

/s

AN
P R
AN /!

O — L —

o If # = {Py,...,P,}, then what is VarNaf(%)?
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The closure of three points

The closure of three points

1) Finite-dimensional case

Let G(r, n) be the Grassmann manifold consisting all r-dimensional
subspaces of C”, which can be identified with all rank r projections in
M,(C).

Suppose P, Q, R are three elements in G = U,G(r, n) such that they
generate a double triangle lattice (as above).

Theorem (Yuan-Ge)

The KS-manifold generated by a double triangle lattice is homeomorphic
to S2. Zariski closure of any three points in S? is S2.

When n is even, randomly picked three projections in M,(C) form a
double triangle lattice with probability one.
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The closure of three points

2) The limit case as n — oo
As n — 00, P, @, R converges in distribution, i.e.,

/ 1trace(d)(P, Q, R))dPdQdR
g

3 Nn

has a limit for any polynomial ¢.
Because P, @, R are non commuting variables, they can be modeled by
the following elements:

G3 = Zy * Zy * Zp: the free product of Z, with itself 3 times (or n times,
in general).



The closure of three points

Let £, be the group von Neumann algebra acting on /2(Gj).

If Ui, Us, Us are canonical generators for Gz (or £g¢;,), then P; = 1_2Uf,
J =1,2,3, are projections.

%j3: the lattice consisting of Py, P>, P; and 0, 1.

Theorem (Yuan-Ge)

Var(Naf(%3)) \ {0, 1} is homeomorphic to S2. Zariski closure of any three
elements in S? generate S°.
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The closure of three points

Theorem (Yuan)

The automorphism group of £, that preserve S? is isomorphic to Ss.

Theorem (Hou-Yuan)

The KS-manifold generated by a double triangle lattice in any von Neu-
mann algebra with a trace is homeomorphic to S?. The only connected
KS-manifold in M,(C) is homeomorphic to S2.

(to appear in Math. Ann.)

Questions: 1. How does the geometry of S? determine A?
(S? “minimally” generates the coefficient ring 2.)

2. What is VarNaf(5,4)? Is it finite-dimensional?

3. Are there (nontrivial) abelian KS-algebras?

42 /45



Product KS-manifolds

Suppose &, Q are KS-manifolds. There is a natural way to associate
& x Q with KS-algebra Naf(%) * Naf(Q)—the free product.

IT SHOULD BE RIGHT

But even with the simplest case ¢ = Q = {0, P, 1}, we do not have a
proof.

4345



Thanks!
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