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What is NG?

What is Noncommutative Geometry ?

Geometrical:
Classification of group actions on a manifold M/G ,
e.g., Z acts on S1 by rotations: n : e2πit → e2πi (t+nθ); to classify S1/θZ.

Algebraic:
Geometrical and topological invariants of the algebra C (M) × G ,
C∞(M) × G or L∞(M) × G ,
e.g., dimension, K-theory, (co)homology groups, etc.

2 / 45



What is NG?

What is Noncommutative Geometry ?

Geometrical:
Classification of group actions on a manifold M/G ,
e.g., Z acts on S1 by rotations: n : e2πit → e2πi (t+nθ); to classify S1/θZ.

Algebraic:
Geometrical and topological invariants of the algebra C (M) × G ,
C∞(M) × G or L∞(M) × G ,
e.g., dimension, K-theory, (co)homology groups, etc.

3 / 45



What is NG?

Classical geometry:

S1 = R/Z and R = S̃1

Z = Ŝ1

→ C[Z] → C ∗(Z) → LZ → l2(Z)
m m m m

S1 = Ẑ

→ P(S1) → C (S1) → L∞(S1) → L2(S1)
geometry alg. geo. C ∗-alg vN alg analysis

Basic facts:
S1 = maximal ideal space of C (S1); C (S1) =< U = e2πit : U∗U = 1 >;
C (S1 × S1) =< U, V : U∗U = V ∗V = 1, UV = VU >
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Z = Ŝ1 → C[Z]

→ C ∗(Z) → LZ → l2(Z)

m

m m m
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What is NG?

Definition
Suppose G is a group (discrete or not) and π a unitary representation

of G on a Hilbert space H (e.g., l2(Z)). Then span{π(G )}− is called a
C*-algebra; the commutant of π(G ) (or linear span of all intertwiners) is
called a von Neumann algebra.

Theorem (Gelfand-Naimark, 1943)
If A is an abelian C*-algebra, then A ∼= C (Â) where Â is the maximal ideal
space.

Theorem (von Neumann, 1929)
If A is an abelian von Neumann algebra, then A ∼= L∞([0, 1], µ).

noncommutative operator algebras=noncommutative topology or
probability theory
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Examples

Examples

Classical one point: ÎÏ C

Classical n points: . . . . . .︸ ︷︷ ︸
n points

ÎÏ C ⊕ · · · ⊕ C

NC one point { . . . . . . }/ ∼=︸ ︷︷ ︸
NC one point

ÎÏ Mn(C)
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Examples

NC points

selfmap ÎÏ C (S1)

ÎÏ Mn(C (S1))

K0(Mn(C (S1)) = Z, K1(Mn(C (S1)) = Z.
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Examples

Noncommutative torus S1 ×θ S1(= S1 ×θ Z)

Algebra:
A = C ∗ 〈

U, V : V −1UV = e2πiθU
〉

θ is rational A ∼= Mn(C (S1 × S1)), K0(A) = Z
θ is irrational K0(A) = Z + θZ (not connected),

K1(A) = Z + Z
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Examples

AQ/CQ

Adele ring : AQ =
∏

p∈P Qp dx : Haar measure on AQ
Idele class group: CQ = A∗

Q/Q∗ d∗x : Haar measure on CQ

dx = limε→0 ε|x |1+εd∗x

For h ∈ S(CQ) and f ∈ S(A), define

(U(h)f )(x ) =
∫
CQ

f (g−1x )h(g )d∗g .

Let Rλ = χ̂[−λ,λ]χ[−λ,λ].
Conjecture

Trace(RλU(h)) = 2h(1) log′ λ +
∑

p∈P
∫
Qp

h(g−1)
|1−g |p d∗g + o(1).
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Central Questions

Central Questions

Basic Questions: classification and representation.

Noncommutative euclidean spaces
C 〈x1, . . . , xn〉, x1, . . . , xn are non commuting variables; or C[Fn]

C* (or topological) level von Neumann(measure space) level
C ∗(Fn) LFn

K0(C ∗(Fn)) = Z K0(LFn ) = R (n > 1)
K1(C ∗(Fn)) = Zn K1(LFn ) = {0}

Classification
Is “n” an invariant of the algebra? Can LFn be generated by fewer than n
elements?
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Central Questions

Approximate embedding problem
Can any algebra be approximated by finite dimensional matrix algebra
(in terms of a measurement)? i.e., Suppose A is an algebra with a linear
functional ρ (or a trace). Suppose A is generated by X1, . . . , Xd . For any
ε > 0 and N > 0, is there a large matrix algebra Mk (C) with functional ρ,
A1, . . . , Ad in Mk (C) such that

|ρ(Xi1 · · · Xis ) − ρ(Ai1 · · · Ais )| < ε, ∀s ≤ N?

Connes’s Embedding: ρ is a trace, A is a (separable) factor of type II1.
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Some Known Results

Some Known Results

1) Jones Index:
H ≤ G a subgroup:

H ≤ G [G : H ] ∈ N ∪ {∞}

vN(G ) the commutant of the left regular representation of G , M ⊂ vN(G )
is a von Neumann subalgebra (weakly closed subalgebra):

M ⊂ vN(G ) [vN(G ) : M] ∈ {4 cos2 π
n : n ∈ N} ∪ [4, ∞]
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Some Known Results

2) Voiculescu’s free dimension:
With (A, ρ) given, X1, . . . , Xd ∈ A, define

Γ(X1, . . . , Xd ; ε, k , N) = {(A1, . . . , Ad )} ⊂ Mk (C)d ∼= R4dk2 .

fdim(X1, . . . , Xd ) = lim inf
ε,k,N

1
k2 log

vol (Γ(X1, . . . , Xd ; ε, k , N)
vol (ball (ρ(I )) + d .
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Some Known Results

Theorem 1 (Voiculescu)
fdim is an algebraic invariant, i.e.,

fdim(X1, . . . , Xd ) = fdim(Y1, . . . , Yc )

if two sets generate the same algebra.

Theorem 2
fdim(Mn(C)) = 1 − 1

n2 ;
fdim(SL2(Z)) = 7

6 ;
fdim(Fn) = n;
fdim(LG×H ) = 1, or −∞, when G and H are infinite;
(LFn are prime factors)
fdim(LSLn(Z)) = 1, n ≥ 3. (Shen-Ge)

23 / 45



Some Known Results

Theorem 1 (Voiculescu)
fdim is an algebraic invariant, i.e.,

fdim(X1, . . . , Xd ) = fdim(Y1, . . . , Yc )

if two sets generate the same algebra.

Theorem 2
fdim(Mn(C)) = 1 − 1

n2 ;
fdim(SL2(Z)) = 7

6 ;
fdim(Fn) = n;
fdim(LG×H ) = 1, or −∞, when G and H are infinite;
(LFn are prime factors)
fdim(LSLn(Z)) = 1, n ≥ 3. (Shen-Ge)

24 / 45



Other viewpoints

Other viewpoints

All above is "real" noncommutative
geometry.

What is a complex noncommutative
geometry?
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Other viewpoints

Motivations

When we replace Z by N, the above l2(Z) ∼= L2(S1) becomes
l2(N) ∼= H2(D), the Hardy space.

Algebraic geometry: I is an ideal in C[x1, . . . , xn],
Var (I) = {x : p(x ) = 0, ∀p ∈ I}. One can replace C[x1, . . . , xn] by
any noncommutative ring.
The need to study R/N∗. For f ∈ S(0, ∞),

ζ(s) =
∫ ∞
0

∑
n f (nx )x s−1dx∫ ∞

0 f (x )x s−1dx
.

Kadison and Singer (1960): T is a triangular algebra if T ∩ T∗ (the
diagonal of T) is abelian—a generalization of H∞(D).
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Noncommutative points

Natural generalization: A〈X1, . . . , Xd 〉, A a noncommutative coefficient
ring; G a “base” space given by A; φi ∈ A〈X1, . . . , Xd 〉 are
noncommutative polynomials. Define

Var({φi}i ) = {(P1, . . . , Pd ) ∈ Gd : φi (P1, . . . , Pd ) = 0}.

Von Neumann’s (continuous) geometry:
Points: projections in B(H).
Manifold: all projections in a von Neumann algebra.
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Noncommutative points

Suppose A is a *-subalgebra of B(H). Then

Lat(A) = {P ∈ B(H) : (I − P)AP = 0, A ∈ A}

is called a (von Neumann) manifold.
In commutative geometry, (1 − x )x = 0 when x2 = 0. Thus (I − P)AP are
zero polynomials.
In von Neumann’s continuous geometry, a von Neumann algebra A is a
coefficient ring, G = {all projections in A} (Grassmann manifold) is the
base (point) space for A.
Von Neumann’s “manifolds” are lattices of projections in a von Neumann
algebra.

—they are “extremely” disconnected since both P and I − P are in
a manifold.
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Noncommutative points

Generalizing this idea, one may consider any A ⊂ Mn(C), G = G(A) (φi
are all degree zero polynomials) and define

Lat(A) ={P ∈ G | A : P → P, ∀A ∈ A}
={P | (1 − P)AP = 0, ∀A ∈ A}.

Lat(A) is always a lattice: P ∧ Q, P ∨ Q ∈ Lat(A), ∀P, Q ∈ Lat(A).

If V ⊂ G is a sublattice or any subset, then we define

Alg(V) ={A ∈ A | A : P → P, ∀P ∈ V}
={A | (1 − P)AP = 0, ∀P ∈ V}.

Alg(V) is always an algebra.
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Noncommutative points

Definition
Suppose A = B(H) = M∞(C) and P a set of projections in B(H). We call
Alg(P) a Kadison-Singer algebra and LatAlg(P) a Kadison-Singer lattice (or
KS-manifold) if LatAlg(P) is a “minimal” generating reflexive lattice for the
von Neumann algebra generated by P.

In this case, we denote Alg(P) by Naf(P) and Lat(·) by Var(·). Then
Alg(P) is a maximal reflexive algebra with respect to its diagonal
subalgebra.

Conjecture: If P ∈ Var(A) and P 6= 0, I , then I − P 6∈ Var(A).

If there is a minimal KS-manifold containing P ⊂ G, then we call
Var(P) the “Zariski closure” of P.
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Noncommutative points

Examples: A = Mn(C).

If P = {P}, then VarNaf(P) = P ∪ {0, I}.

If P = {P, Q} is a lattice in A , then VarNaf(P) = P ∪ {0, I}. (P.
Halmos, 1972).
If P = {P, Q, R} is a lattice in A, then is
VarNaf(P) = P ∪ {0, I}?—Answer: no!
This is the simplest non trivial case. The lattice is called a double
triangle lattice:

1
↗ ↑ ↖

P Q R
↖ ↑ ↗

0

If P = {P1, . . . , Pn}, then what is VarNaf(P)?
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The closure of three points

The closure of three points

1) Finite-dimensional case
Let G(r , n) be the Grassmann manifold consisting all r -dimensional
subspaces of Cn, which can be identified with all rank r projections in
Mn(C).
Suppose P, Q, R are three elements in G = ∪rG(r , n) such that they
generate a double triangle lattice (as above).

Theorem (Yuan-Ge)
The KS-manifold generated by a double triangle lattice is homeomorphic
to S2. Zariski closure of any three points in S2 is S2.

When n is even, randomly picked three projections in Mn(C) form a
double triangle lattice with probability one.
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The closure of three points

2) The limit case as n → ∞
As n → ∞, P, Q, R converges in distribution, i.e.,∫

G3

1
n

trace(φ(P, Q, R))dPdQdR

has a limit for any polynomial φ.
Because P, Q, R are non commuting variables, they can be modeled by
the following elements:

G3 = Z2 ∗ Z2 ∗ Z2: the free product of Z2 with itself 3 times (or n times,
in general).
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The closure of three points

Let LG3 be the group von Neumann algebra acting on l2(G3).

If U1, U2, U3 are canonical generators for G3 (or LG3 ), then Pj = 1−Uj
2 ,

j = 1, 2, 3, are projections.
F3: the lattice consisting of P1, P2, P3 and 0, 1.

Theorem (Yuan-Ge)
Var(Naf(F3)) \ {0, 1} is homeomorphic to S2. Zariski closure of any three
elements in S2 generate S2.
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The closure of three points

Theorem (Yuan)
The automorphism group of LG3 that preserve S2 is isomorphic to S3.

Theorem (Hou-Yuan)
The KS-manifold generated by a double triangle lattice in any von Neu-
mann algebra with a trace is homeomorphic to S2. The only connected
KS-manifold in Mn(C) is homeomorphic to S2.
(to appear in Math. Ann.)

Questions: 1. How does the geometry of S2 determine A?
(S2 “minimally” generates the coefficient ring A.)

2. What is VarNaf(F4)? Is it finite-dimensional?
3. Are there (nontrivial) abelian KS-algebras?
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Product KS-manifolds

Product KS-manifolds

Suppose P, Q are KS-manifolds. There is a natural way to associate
P × Q with KS-algebra Naf(P) ∗ Naf(Q)—the free product.
IT SHOULD BE RIGHT
But even with the simplest case P = Q = {0, P, 1}, we do not have a
proof.
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Thanks!

44 / 45


	What is NG?
	Examples
	Central Questions
	Some Known Results
	Other viewpoints
	Noncommutative points
	The closure of three points
	Product KS-manifolds
	

