C*-algebras of certain non-minimal homeomorphisms on a Cantor set

University of Wyoming

17 June, 2013

Minimal Cantor System

Let X be a Cantor set, and let $\sigma: X \to X$ be a minimal homeomorphism. Let $y \in X$. Consider

$$A = \mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$$

and

$$A_y=\mathrm{C}^*\{f,gu:\ f,g\in\mathrm{C}(X),\ g(y)=0\}\subseteq A.$$

Minimal Cantor System

Let X be a Cantor set, and let $\sigma: X \to X$ be a minimal homeomorphism. Let $y \in X$. Consider

$$A = \mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$$

and

$$A_y = \mathrm{C}^*\{f, gu: \ f, g \in \mathrm{C}(X), \ g(y) = 0\} \subseteq A.$$

Theorem

A is a simple AT-algebra, and A_y is a simple AF-algebra. Moreover, $K_0(A) \cong K_0(A_y)$ as order-unit groups.

Let $B = (V, E, \leq)$ be an ordered Bratteli diagram.

Let $B = (V, E, \leq)$ be an ordered Bratteli diagram. That is

1. (V, E) is a simple Bratteli diagram.

Let $B = (V, E, \leq)$ be an ordered Bratteli diagram. That is

- 1. (V, E) is a simple Bratteli diagram.
- 2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set.

Let $B = (V, E, \leq)$ be an ordered Bratteli diagram. That is

- 1. (V, E) is a simple Bratteli diagram.
- 2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set. It induces a lexicographical order on the set of infinite paths, i.e.,

$$(\xi_1, \xi_1, ...) > (\eta_1, \eta_2, ...)$$

if an only if there is N such that

$$\xi_n = \eta_n, \quad \forall n > N \quad \text{and} \quad \xi_N > \eta_N.$$

Let $B = (V, E, \leq)$ be an ordered Bratteli diagram. That is

- 1. (V, E) is a simple Bratteli diagram.
- 2. For every vertex v, the set of edges $r^{-1}(v)$ which end at v form a totally ordered set. It induces a lexicographical order on the set of infinite paths, i.e.,

$$(\xi_1, \xi_1, ...) > (\eta_1, \eta_2, ...)$$

if an only if there is N such that

$$\xi_n = \eta_n, \quad \forall n > N \quad \text{and} \quad \xi_N > \eta_N.$$

3. There are a unique maximal infinite path $\xi_{\rm max}$ and a unique minimal path $\xi_{\rm min}$.

Let X_B be the space of all infinite paths of (V, E). It forms a Cantor set naturally. Define the Vershik map

$$\sigma: X_B \to X_B$$

by

$$\sigma(\xi) = \begin{cases} (\eta_1^{\min}, ..., \eta_n^{\min}, \xi_n + 1, ...) & \text{if } \xi_1, ..., \xi_n \in V_{\max}, \xi_{n+1} \notin V_{\max} \\ \xi_{\min} & \text{if } (\xi_1, \xi_2, ...) = \xi_{\max}, \end{cases}$$

where $\xi = (\xi_1, \xi_2, ...)$. Then σ is a minimal homeomorphism.

Let X_B be the space of all infinite paths of (V, E). It forms a Cantor set naturally. Define the Vershik map

$$\sigma: X_B \to X_B$$

by

$$\sigma(\xi) = \begin{cases} (\eta_1^{\min}, ..., \eta_n^{\min}, \xi_n + 1, ...) & \text{if } \xi_1, ..., \xi_n \in V_{\max}, \xi_{n+1} \notin V_{\max} \\ \xi_{\min} & \text{if } (\xi_1, \xi_2, ...) = \xi_{\max}, \end{cases}$$

where $\xi = (\xi_1, \xi_2, ...)$. Then σ is a minimal homeomorphism.

Theorem (HPS)

Any minimal Cantor system has a Bratteli-Vershik model as described above. Moreover $K_B = K_0(A_y)$, where K_B is the dimension group associated to the Bratteli diagram B = (V, E), and it exhausts all simple dimension group which is not isomorphic \mathbb{Z} .

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

1. There are only finitely many minimal invariant closed subsets $Y_1, Y_2, ..., Y_k$,

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

- 1. There are only finitely many minimal invariant closed subsets $Y_1, Y_2, ..., Y_k$,
- 2. (X, σ) does not invariant clopen subset (i.e., (X, σ) is indecomposible).

Cantor system with finitely many minimal subsets

Consider a homeomorphism σ of a Cantor set X such that

- 1. There are only finitely many minimal invariant closed subsets $Y_1, Y_2, ..., Y_k$
- 2. (X, σ) does not invariant clopen subset (i.e., (X, σ) is indecomposible).

Let us call such a system a k-minimal system.

• $A = C(X) \rtimes_{\sigma} \mathbb{Z}$.

- $A = C(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_1 \in Y_1$, $y_2 \in Y_2$, ..., $y_k \in Y_k$, and consider

$$A_{y_1,\dots,y_k}=\mathrm{C}^*\{f,gu:\ f,g\in\mathrm{C}(X),\ g(y_1)=\dots=g(y_k)=0\}\subseteq A.$$

- $A = C(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_1 \in Y_1$, $y_2 \in Y_2$, ..., $y_k \in Y_k$, and consider

$$A_{y_1,\dots,y_k}=\mathrm{C}^*\{f,gu:\ f,g\in\mathrm{C}(X),\ g(y_1)=\dots=g(y_k)=0\}\subseteq A.$$

• $I = C_0(X \setminus Y) \rtimes_{\sigma} \mathbb{Z}$, where $Y = \bigcup_{i=1}^k Y_i$.

- $A = C(X) \rtimes_{\sigma} \mathbb{Z}$.
- Fix $y_1 \in Y_1$, $y_2 \in Y_2$, ..., $y_k \in Y_k$, and consider

$$A_{y_1,\dots,y_k}=\mathrm{C}^*\{f,gu:\ f,g\in\mathrm{C}(X),\ g(y_1)=\dots=g(y_k)=0\}\subseteq A.$$

• $I = C_0(X \setminus Y) \rtimes_{\sigma} \mathbb{Z}$, where $Y = \bigcup_{i=1}^k Y_i$.

Remark

I is an ideal of A, and also an ideal of $A_{y_1,...,y_k}$. One has the following exact sequence

$$0 \longrightarrow I \longrightarrow A \longrightarrow \bigoplus_{i=1}^k C(Y_i) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0.$$

Theorem (Poon)
The C^* -algebra $A_{y_1,...,y_k}$ is AF.

Theorem (Poon)

The C*-algebra $A_{y_1,...,y_k}$ is AF.

Hence the ideal I is AF.

Theorem (Poon)

The C*-algebra $A_{y_1,...,y_k}$ is AF.

Hence the ideal I is AF. Since that $\bigoplus_{i=1}^k \mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}$ is A \mathbb{T} , the C*-algebra A is A \mathbb{T} if and only if the index map is 0.

Theorem (Poon)

The C*-algebra $A_{y_1,...,y_k}$ is AF.

Hence the ideal I is AF. Since that $\bigoplus_{i=1}^k \mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}$ is A \mathbb{T} , the C*-algebra A is A \mathbb{T} if and only if the index map is 0.

Consider the six-term exact sequence

Theorem (Poon)

The C*-algebra $A_{y_1,...,y_k}$ is AF.

Hence the ideal I is AF. Since that $\bigoplus_{i=1}^k \mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}$ is A \mathbb{T} , the C*-algebra A is A \mathbb{T} if and only if the index map is 0.

Consider the six-term exact sequence

$$\begin{split} \mathrm{K}_0(I) & \longrightarrow \mathrm{K}_0(A) & \longrightarrow \oplus_i \mathrm{K}_0(\mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}) \;. \\ & \qquad \downarrow \\ \oplus_i \mathbb{Z} & \cong \oplus_i \mathrm{K}_1(\mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}) \longleftarrow \mathrm{K}_1(A) \cong \mathbb{Z} \longleftarrow \mathrm{K}_1(I) \cong \{0\} \end{split}$$

The image of Ind is $(\bigoplus_{i=1}^k \mathbb{Z})/\mathbb{Z}(1,...,1)$.

Theorem (Poon)

The C*-algebra $A_{y_1,...,y_k}$ is AF.

Hence the ideal I is AF. Since that $\bigoplus_{i=1}^k \mathrm{C}(Y_i) \rtimes_{\sigma} \mathbb{Z}$ is AT, the C*-algebra A is AT if and only if the index map is 0.

Consider the six-term exact sequence

$$\begin{split} \mathrm{K}_0(I) & \longrightarrow \mathrm{K}_0(A) & \longrightarrow \oplus_i \mathrm{K}_0(\mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}) \;. \\ & \downarrow \\ \oplus_i \mathbb{Z} & \cong \oplus_i \mathrm{K}_1(\mathrm{C}(Y_i) \rtimes_\sigma \mathbb{Z}) \longleftarrow \mathrm{K}_1(A) \cong \mathbb{Z} \longleftarrow \mathrm{K}_1(I) \cong \{0\} \end{split}$$

The image of Ind is $(\bigoplus_{i=1}^k \mathbb{Z})/\mathbb{Z}(1,...,1)$. Hence A is $A\mathbb{T}$ if and only if k=1.

Definition

A Kakutani-Rokhlin partition of (X, σ) consists of pairwise disjoint clopen sets

$$\{Z(I,j); 1 \le I \le L, 1 \le j \le J(I)\}$$

for some natural numbers J(1),...,J(L) such that

- 1. $\bigcup_{I,j} Z_{I,j} = X$ and
- 2. $\sigma(Z(I,j)) = Z(I,j+1)$ for any $1 \le j < J(I)$.

For a *k*-simple system, Kakutani-Rohklin partitions always exist. Moreover

Theorem (HPS)

There are Kakutani-Rokhlin partitions of X

$$\mathscr{P}_n = \{ Z(n,l,j); \ 1 \le l \le L(n), 1 \le j \le J(n,l) \}$$

such that

- 1. the sequence $(Z_n := \bigcup_{l=1}^{L(n)} Z(n, l, J(n, l)))$ is a decreasing sequence of clopen sets with intersection $\{y_1, y_2, ..., y_k\}$
- 2. the partition \mathcal{P}_{n+1} is finer than the partition \mathcal{P}_n ,
- 3. $\bigcup_n \mathscr{P}_n$ generates the topology of X.

Hence Bratteli-Vershik Model always exists for a k-simple system.

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \ge 1$, there are pairwise disjoint subsets $V_1^n, ..., V_k^n$ of V^n such that

1. the diagram B is connected (as a graph),

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_1^n, ..., V_k^n$ of V^n such that

- 1. the diagram B is connected (as a graph),
- 2. for any $1 \le i \le k$ and any $v \in V_i^{n+1}$, one has that $s(r^{-1}(v)) \subseteq V_i^n$,

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_1^n, ..., V_k^n$ of V^n such that

- 1. the diagram B is connected (as a graph),
- 2. for any $1 \le i \le k$ and any $v \in V_i^{n+1}$, one has that $s(r^{-1}(v)) \subseteq V_i^n$,
- 3. for any $1 \le i \le k$ and any level n, there is m > n such that each vertex of V_i^m is connected to all vertexes of V_i^n .

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_1^n, ..., V_k^n$ of V^n such that

- 1. the diagram B is connected (as a graph),
- 2. for any $1 \le i \le k$ and any $v \in V_i^{n+1}$, one has that $s(r^{-1}(v)) \subseteq V_i^n$,
- 3. for any $1 \le i \le k$ and any level n, there is m > n such that each vertex of V_i^m is connected to all vertexes of V_i^n .

Moreover, denote by $V_o^n = V^n \setminus (V_1^n \cup \dots \cup V_k^n)$ for $n \geq 1$. Then

1. The diagram B is said to be *strongly k-simple* if for any level n, there is m > n such that if a vertex in V_o^m is connected to some vertex of V_o^n , then it is connected to all vertices of V_o^n .

Let $k \in \mathbb{N}$. The Bratteli diagram B is said to be k-simple if for each $n \geq 1$, there are pairwise disjoint subsets $V_1^n, ..., V_k^n$ of V^n such that

- 1. the diagram B is connected (as a graph),
- 2. for any $1 \le i \le k$ and any $v \in V_i^{n+1}$, one has that $s(r^{-1}(v)) \subseteq V_i^n$,
- 3. for any $1 \le i \le k$ and any level n, there is m > n such that each vertex of V_i^m is connected to all vertexes of V_i^n .

Moreover, denote by $V_o^n = V^n \setminus (V_1^n \cup \dots \cup V_k^n)$ for $n \geq 1$. Then

- 1. The diagram B is said to be *strongly k-simple* if for any level n, there is m > n such that if a vertex in V_o^m is connected to some vertex of V_o^n , then it is connected to all vertices of V_o^n .
- 2. The diagram B is said to be *non-elementary* if for any V_o^n , there is m > n such that the multiplicity of the edges between V_o^n and V_o^m is either 0 or at least 2.

How to order it?

Definition

An ordered Bratteli diagram $B = (V, E, \ge)$ is called *k-simple* (with a slight abusing of notation) if it satisfies the following conditions:

1. the unordered Bratteli diagram (V, E) is k-simple,

How to order it?

Definition

An ordered Bratteli diagram $B = (V, E, \ge)$ is called *k-simple* (with a slight abusing of notation) if it satisfies the following conditions:

- 1. the unordered Bratteli diagram (V, E) is k-simple,
- 2. There are infinite paths $z_{1,\max},...,z_{k,\max}$ and $z_{1,\min},...,z_{k,\min}$ such that for any level n and $1 \le i \le k$,

$$\{z_{i,\min}^n,z_{i,\max}^n\}\subset V_i^n$$

and
$$X_{\max} = \{z_{1,\max},...,z_{k,\max}\}, X_{\min} = \{z_{1,\min},...,z_{k,\min}\}.$$

How to order it?

Definition

An ordered Bratteli diagram $B = (V, E, \ge)$ is called *k-simple* (with a slight abusing of notation) if it satisfies the following conditions:

- 1. the unordered Bratteli diagram (V, E) is k-simple,
- 2. There are infinite paths $z_{1,\max},...,z_{k,\max}$ and $z_{1,\min},...,z_{k,\min}$ such that for any level n and $1 \le i \le k$,

$$\{z_{i,\min}^n,z_{i,\max}^n\}\subset V_i^n$$

and
$$X_{\max} = \{z_{1,\max},...,z_{k,\max}\}, X_{\min} = \{z_{1,\min},...,z_{k,\min}\}.$$

Remark

One consequence of this condition is that there is L such that for all $n \ge L$ and any $v \in V_o^n$, the maximal edge (or minimal edge) starting with v backwards to V^1 will end up in V_i^1 for some $1 \le i \le k$. Denote by $m_+(v) = i$ (or $m_-(v) = i$).

3 (Continuity Conditons)

3 (Continuity Conditons) For any $v \in V_o^n$, one has 3-a if e is an edge with s(e) = v, one has

$$m_{-}(s(e+1)) = m_{+}(v),$$

3 (Continuity Conditions) For any $v \in V_o^n$, one has 3-a if e is an edge with s(e) = v, one has

$$m_{-}(s(e+1)) = m_{+}(v),$$

(if $e \in E_{\text{max}}$, the vertex s(e+1) is understood as s(e'+1) with e' a non-maximal edge starting with e and ending at some level m > n—such edge exists and $m_-(s(e+1))$ is well defined, by Condition 2),

- 3 (Continuity Conditons) For any $v \in V_o^n$, one has
 - 3-a if e is an edge with s(e) = v, one has

$$m_{-}(s(e+1)) = m_{+}(v),$$

(if $e \in E_{\text{max}}$, the vertex s(e+1) is understood as s(e'+1) with e' a non-maximal edge starting with e and ending at some level m > n—such edge exists and $m_-(s(e+1))$ is well defined, by Condition 2), and

3-b if e is an edge with $e \notin E_{\text{max}}$, r(e) = v and $s(e) \in V_i^{n-1}$ with $n \ge 3$, one has

$$m_{-}(s(e+1))=i.$$

- 3 (Continuity Conditons) For any $v \in V_o^n$, one has
 - 3-a if e is an edge with s(e) = v, one has

$$m_-(s(e+1))=m_+(v),$$

(if $e \in E_{\text{max}}$, the vertex s(e+1) is understood as s(e'+1) with e' a non-maximal edge starting with e and ending at some level m > n—such edge exists and $m_-(s(e+1))$ is well defined, by Condition 2), and

3-b if e is an edge with $e \notin E_{\text{max}}$, r(e) = v and $s(e) \in V_i^{n-1}$ with $n \ge 3$, one has

$$m_{-}(s(e+1))=i.$$

Remark

Note that if k = 1, then Condition 3 is redundant.

Theorem

There is a bijection correspondence between the equivalence classes of k-simple ordered Bratteli diagrams and the pointed topological conjugacy classes of Cantor systems with k minimal invariant subsets.

Definition

Let $B = (V, E, \geq)$ be a k-simple ordered Bratteli diagram.

Definition

Let $B = (V, E, \geq)$ be a k-simple ordered Bratteli diagram. For each level $n \geq 2$, define the *transition graph* L_n to be the following directed graph:

Definition

Let $B=(V,E,\geq)$ be a k-simple ordered Bratteli diagram. For each level $n\geq 2$, define the *transition graph* L_n to be the following directed graph: The vertices of L_n are $Y_1,...,Y_k$, and the edges are labelled by the vertices in V_o^n .

Definition

Let $B=(V,E,\geq)$ be a k-simple ordered Bratteli diagram. For each level $n\geq 2$, define the transition graph L_n to be the following directed graph:The vertices of L_n are $Y_1,...,Y_k$, and the edges are labelled by the vertices in V_o^n . For each $v\in V_o^n$, the edge v starts from Y_i and ends at Y_j if and only if

$$m_-(v) = i$$
 and $m_+(v) = j$.

Example

Considering the previous example of 2-simple Bratteli diagram, its transition graph at level n is

Example

Considering the previous example of 2-simple Bratteli diagram, its transition graph at level n is

Lemma

Let $B=(V,E,\geq)$ be k-simple non-elementary ordered Bratteli diagram with $k\geq 2$, and let L_n denotes the transition graph of B at level n. Then, if there is an edge v_1 has the vertex Y_i as the source point, then there is a closed walk $(v_1,...,v_n(=v_1))$ in L_n .

Index map and transition graph

Recall that the index map

$$\bigoplus_{i=1}^k \mathbb{Z} \cong \bigoplus_{i=1}^k \mathrm{K}_1(\mathrm{C}(Y_i)) \to \mathrm{K}_0(I)$$

is nonzero if $k \geq 2$. Denote by d_i the the image of i-th copy of \mathbb{Z} .

Index map and transition graph

Recall that the index map

$$\bigoplus_{i=1}^k \mathbb{Z} \cong \bigoplus_{i=1}^k \mathrm{K}_1(\mathrm{C}(Y_i)) \to \mathrm{K}_0(I)$$

is nonzero if $k \geq 2$. Denote by d_i the the image of i-th copy of \mathbb{Z} .

Let Y_i be a minimal component of (X_B, σ) , and let L_n be the transition graph of B at level n. Denote by

$$E_{+}(Y_{i}) = \{v_{1}^{+}, ..., v_{s}^{+}\}$$

the the set of edges of L_n which have Y_i as source, and denote by

$$E_{-}(Y_i) = \{v_1^-, ..., v_t^-\}.$$

the the set of edges of L_n which have Y_i as range.

That is,

Theorem

The element d_i is given by

$$(e_{v_1^+} + \cdots + e_{v_s^+}) - (e_{v_1^-} + \cdots + e_{v_t^-}),$$

where e_v stands for $(0,...,0,1,0,...,0)) \in \bigoplus_{V_o^n} \mathbb{Z}$ with entry 1 at the position v.

Some consequences

Corollary

Let $B = (V, E, \ge)$ be a k-simple ordered Bratteli diagram with $k \ge 2$. Then each transition graph L_n is connected.

Some consequences

Corollary

Let $B = (V, E, \geq)$ be a k-simple ordered Bratteli diagram with $k \geq 2$. Then each transition graph L_n is connected.

Proof.

The only relation between $d_1, ..., d_k$ is $d_1 + \cdots + d_k = 0$.

Corollary

Assume B is non-elementary. The transition graph L_n has at least k edges. In particular, one has that

$$|V_o^n| = \left| V_n \setminus \bigcup_{i=1}^k V_i^n \right| \ge k$$

for all n.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$\operatorname{Image}(\operatorname{Ind}) \cap K_0^+(I_B) = \{0\}.$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_B is simple), then the image of the index map is in subgroup of I_B which consists of infinitesimal elements.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$\operatorname{Image}(\operatorname{Ind}) \cap K_0^+(I_B) = \{0\}.$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_B is simple), then the image of the index map is in subgroup of I_B which consists of infinitesimal elements.

Corollary

Denote by r the \mathbb{Q} -rank of I_B . Then $r \geq k$ and the cone of positive linear maps from I_B to \mathbb{R} has dimension at most r - k + 1.

Corollary

If B is a non-elementary ordered Bratteli diagram, then

$$\operatorname{Image}(\operatorname{Ind}) \cap K_0^+(I_B) = \{0\}.$$

Moreover, if B is assume to be strongly k-simple (so the ideal I_B is simple), then the image of the index map is in subgroup of I_B which consists of infinitesimal elements.

Corollary

Denote by r the \mathbb{Q} -rank of I_B . Then $r \geq k$ and the cone of positive linear maps from I_B to \mathbb{R} has dimension at most r - k + 1.

Corollary

Let (X, σ) be a indecomposible Cantor system with k minimal subsets. Then the C^* -algebra $\mathrm{C}(X) \rtimes_{\sigma} \mathbb{Z}$ is stably finite. Therefore, if $k \geq 2$, it is a stably finite C^* -algebra with stable rank 2 and real rank 0.

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense:

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1} , there is a path $(v_1, v_2, ..., v_l)$ in L_n

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1} , there is a path $(v_1, v_2, ..., v_l)$ in L_n such that

1. the edge w and the path $(v_1, ..., v_l)$ have the same range and source,

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1} , there is a path $(v_1, v_2, ..., v_l)$ in L_n such that

- 1. the edge w and the path $(v_1, ..., v_l)$ have the same range and source,
- 2. for any $v \in V_o^n$, the number of times v (as an edge of L_n) appears in $(v_1, ..., v_l)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1} , there is a path $(v_1, v_2, ..., v_l)$ in L_n such that

- 1. the edge w and the path $(v_1, ..., v_l)$ have the same range and source,
- 2. for any $v \in V_o^n$, the number of times v (as an edge of L_n) appears in $(v_1, ..., v_l)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),
- 3. if w (as a vertex in V_o^{n+1}) is connected to some vertex in V_i^n for some $1 \le i \le k$, then $(v_1, v_2, ..., v_l)$ passes through Y_i ,

Consider the k-simple ordered Bratteli diagram (V, E, \geq) . The transition graphs $\{L_n; n=2,...\}$ are compatible to the unordered Bratteli diagram (V, E) in the following sense: For any edge w of L_{n+1} , there is a path $(v_1, v_2, ..., v_l)$ in L_n such that

- 1. the edge w and the path $(v_1, ..., v_l)$ have the same range and source,
- 2. for any $v \in V_o^n$, the number of times v (as an edge of L_n) appears in $(v_1, ..., v_l)$ is the same as the multiplicity of the edges in the Bratteli diagram (V, E) between v and w (as vertices of (V, E)),
- 3. if w (as a vertex in V_o^{n+1}) is connected to some vertex in V_i^n for some $1 \le i \le k$, then $(v_1, v_2, ..., v_l)$ passes through Y_i , and
- 4. for any edge v of L_n , the vertex v (as a vertex in the Bratteli diagram) is connected to some vertex in $V_{\min(v)}^{n-1}$ and is also connected to some vertex in $V_{\max(v)}^{n-1}$.

Theorem

If there is a sequence of directed graphs $\{L_n; n=2,3,...\}$ such that the vertices of each L_n are $\{Y_1,...,Y_k\}$, the edges of each L_n are labelled by the vertices in V_o^n , and (L_n) are compatible with (V,E) in the sense above, then there is an order on (V,E) so that it is a k-simple ordered Bratteli diagram.

The elements $d_1, ..., d_k$ in I_B satisfy

1. $c_1d_1 + \cdots + c_nd_n = 0$ if and only if $c_1 = c_2 = \cdots = c_n$;

The elements $d_1, ..., d_k$ in I_B satisfy

- 1. $c_1d_1 + \cdots + c_nd_n = 0$ if and only if $c_1 = c_2 = \cdots = c_n$;
- 2. for each level n and each $v \in V_o^n$, one has that $d_i(v) \in \{0, \pm 1\}, \ 1 \le i \le k;$

The elements $d_1, ..., d_k$ in I_B satisfy

- 1. $c_1d_1 + \cdots + c_nd_n = 0$ if and only if $c_1 = c_2 = \cdots = c_n$;
- 2. for each level n and each $v \in V_o^n$, one has that $d_i(v) \in \{0, \pm 1\}$, $1 \le i \le k$;
- 3. for each $v \in V_o^n$, one has that

$$|\{1 \le i \le k; \ d_i(v) \ne 0\}| = 0 \text{ or } 2,$$

and if

$$\{1 \le i \le k; \ d_i(v) \ne 0\} = \{i_1, i_2\},\$$

then $(d_{i_1}(v), d_{i_2}(v))$ is either (+1, -1) or (-1, +1);

Theorem

Let B = (V, E) be an unordered strongly k-simple Bratteli diagram satisfying the condition that any vertex in V_o^{n+1} is connected to all vertices in V^n .

Suppose that there are element $d_1,...,d_k \in I_B \subseteq K_0(B)$ satisfying the previous conditions. Then there is an order \geq such that (V,E,\geq) is an ordered (strongly) k-simple Bratteli diagram.